此前发出的本文,犯了一个必须纠正的错误。
原文该部分内容如下(问题和答案都是错误的):
假如当初(明朝正德)生产了500万个青花盘,今天还会剩多少个呢?
假如当初(明朝正德)生产了500万个青花盘,今天还能看到的可能性有多大?正确的答案是:
该青花盘流传至今的概率约为70.48%。
谢谢@牧鲸人、@燾、@A气模拱门舞星帐篷充气灯箱、@王叉叉几位朋友的指正。
向阅读和转发了此前本文的朋友致歉。
特更新全文如下:
真的有以小博大这回事吗?
有。
但并不是以下这些。
首先,不是买彩票;
其次,也不是赌博;
第三,更不是对消息股或比特币的All in。
那到底是什么呢?
本文将向你揭示一个秘密:
有些小概率事件可以叠加成大概率事件,而该事件因为“小概率”而拥有的特别选择权,会带来赚大钱的机遇。一
我们先倒过来想,看一个极小概率但是亏大钱的例子。
请看题目。
幸存的青花瓷
明青花瓷非常值钱。例如,明永乐年间的青花如意垂肩折枝花果纹梅瓶(高36.5 cm),2011年曾以1.6866亿港元成交。
我们假设一只青花盘在一年内被失手打破的概率是3%。
如果明朝正德年间(距今约500年)生产了一万只青花麒麟盘,请问现在还有多大可能性见到这种盘子?
(题目来自何书元编著的《概率论》)
假如不计算,你随便估一下,现存多少正德青花麒麟盘?500年间不被打破的概率p=(1-0.03)的500次方=2.43乘以10的负七次方。一万只青花盘被打破的概率是q的一万次方=0.99757,那么这一万只盘子,至今仍然幸存的概率是1-0.99757=0.00243。
也就是说,在今天,有千分之2.43的概率还能见到这种青花盘。假如当初(明朝正德)生产了500万个青花盘,今天还能看到的可能性有多大?答案是:
该青花盘流传至今的概率约为70.48%。
就像上面青花盘的例子,每年打破的概率只有百分之三,而且足足有1万个,但是历经500年,至少剩下一个的概率只有千分之2.43。
墨菲定律的原句是:如果有两种或两种以上的方式去做某件事情,而其中一种选择方式将导致灾难,则必定有人会做出这种选择。“墨菲定律”(英文:Murphy's theorem)主要内容有四个方面:四、如果你担心某种情况发生,那么它就更有可能发生。
墨菲定律似乎是热力学第二定律的世俗版。作为热力学的三条基本定律之一,热力学第二定律表述热力学过程的不可逆性:孤立系统自发地朝着热力学平衡方向──最大熵状态──演化,同样地,第二类永动机永不可能实现。500万只青花盘,在500年间大多不可避免地被一一摔碎,似乎在说,墨菲定律和熵增,本质上是一回事情。用熵增来解读,盘子会从当前这个有序的状态(好盘子),到无序的状态(碎盘子)。- 巴菲特说:你要买那些傻瓜也能经营好的公司,因为一切公司早晚会落到傻瓜手里。
如果从有序到无序“不可逆转”,为什么人类还能在地球上繁衍进化呢?
既然小概率事件在样本量足够大的时候无法避免,那么,我们押“青花盘早晚会碎掉”,是不是可以从中赚大钱呢?最生动的案例莫过于电影《大空头》里所讲述的真实故事。片中蝙蝠侠扮演的是一位投资界的传奇人物迈克尔·伯里,他于2000年成立 Scion 基金,至2008年,基金投资人实现的扣除费用后净回报率是489%。迈克尔·伯里小时候失去一只眼睛,性格孤僻,也许因此而更善于独立思考。他本职是医生,起初是个业余投资者。1、起初他是格雷厄姆的“价值投资”信徒,后来也许仍然是,只不过运用得更加自由奔放;
2、也许是因为起点很低,他开始在便宜、冷门、小市值、流动性差的股票里找机会;3、他的核心策略是,在100%遵守安全边际的原则下,去寻找被严重低估的便宜货;概括而言,他是一个对概率波动有更大承受力的价值投资者。大空头的攻略
时间:2005年-2007年。
机会:2005年,发现美国房贷还款记录糟糕,违约率不断上升。
下注:赌地产泡沫会破裂,做空次级房贷。
赌注:CDS。若输每年缴1.5%保费,若赢赚30-50倍保费赔付。
过程:从2005年开始下注,2006年基金大幅回撤,饱受煎熬。
结果:2007年,次级房贷危机爆发,大赚一笔。
有一个价值两亿的明朝青花盘,被一个土豪放在家里的客厅炫耀。有次你去他家做客,发现他家有三个熊孩子,每天打打闹闹,经常打坏东西,家长呵斥也没用。你心想,尽管主人很小心,早晚那个盘子会被熊孩子们毁掉。- 所以两年内不被打碎的概率是(1-30%)✖️(1-30%)=49%;
- 也就是说,两年内被打碎的概率(1-49%)=51%。
于是,你对主人说:我们来合作一把,我来出钱帮你这个盘子买个保险,万一出事儿了,赔付的钱我们对半分。