复利的谎言(三部曲之一)

该系列文章围绕人生最重要的公式“复利公式”展开。

  • 上部分:复利的谎言

  • 中部分:复利的公式

  • 下部分:复利的本质

本篇是其中的第一部分,曾经发过。在此新增加了部分内容。

1

十年赚10倍,靠谱吗?

假如你买了茅台股票并拿几年,就有10倍。

或者买特斯拉or蔚来汽车的股票,不到一年,你就能赚10倍。

“tenbagger” 一词出自世界级投资大师——彼得.林奇的自传《成功投资》一书,意译为“能翻10倍的股票”。

有人算了一下,假如你想在股市十年变10倍,每年“只”要26%回报即可。

于是,关于复利的传说,又多了一个美妙的数字:26%。

然而,假如你相信如上“复利法则”,也许就掉入了一个谎言的陷阱。

不止在投资领域,关于个人的“成长”和“精进”,也流传着一年抵N年的梦想。

最近,有人问我:

  • 一个人可以做到持续地每天进步百分之0.1或者说百分之0.05吗?

  • 如果可以或者说有可能达成的话,关键点在哪里呢?难点在哪里呢?

我回答:

不可能。

我小时候曾经得过一本武林秘籍,上面介绍了一种看起来很靠谱的方法,让人学会“飞檐走壁的轻功”。

具体方法是:

  1. 挖一个大坑,在里面垫很多层草席,一次垫到接近地面;

  2. 每天锻炼跳出地面,直至轻松自如;

  3. 取掉一张草席,继续锻炼......

  4. 再取掉一张......

每层草席才多厚呀,这样,你就神不知鬼不觉战胜地心引力,掌握绝世轻功了。

可惜,少年的我胸无大志,没有亲身实践。

你看,这是不是也是“复利思维”的一种简化版?

“复利思维”,这个看似有些鸡汤的话题,其实包含了“不确定性、连续性、对称性、预测、幂律分布、肥尾、下注、决策、贝叶斯、长期主义”等好多个有趣的话题。


2

本文的观点是:

  • 绝大多数人对于复利的理解是错误的;

  • 极少有人能够靠复利获利。

复利的谎言,并非是说“复利是谎言”。

恰恰相反,复利可能是人生当中最重要的公式。

我在《人生算法》里写过:一个人的成就,来自一套“核心算法”乘以“大量重复动作的n次方”。

这正是长期主义的秘密。即使是普通人的努力,在长期主义的复利作用下,也可能累积成奇迹。

然而,能做到这一点的,可能就不是“普通人”了。

聪明人呢?年轻时不甘心于做“大量重复的事情”,年长后又很难实现自己巅峰时刻的连续性。

《原则》的作者瑞·达利欧,他公司的宏观基金在过去十年里表现不佳,在截至2021年11月的10年里,年化回报率约为1.6%。

复利太难了。即使公司很大、人很聪明、资源丰富、钱很多,也不例外。


3

复利的公式,表述如下:

  • FV(Future Value):是指财富在未来的价值;

  • PV(Present Value):是指现值,亦即指本金;

  • i(interest):是指单次(单个周期内)的固定利率或固定回报率,即增长比例;

  • n:则是累计的周期,或者说是重复的次数。

看起来似乎很简单?

不。

这个公式背后的意义,要复杂得多,丰富得多。

先从公式本身,来看复利公式的十个要素

一、FV(未来价值)

未来的价值不是一个结果,也不是单纯的目标。

人生的难处在于模糊性和不确定性,所以当下的决策总是条件不足,看不清楚。

未来价值提供了一个估值函数,以实现模糊的精确,为人生做指引,为决策做依据。

FV(未来价值)像是一个人的理想,一个公司的愿景、使命和价值观。

模糊的大方向,能帮助我们穿越迷雾,翻山越岭。

二、PV(现值)

有人说自己去年的股票赚了80%,完胜绝大多数基金经理。连表现很好的巴菲特,2021年股价回报也“只有”29.6%。

且不谈连续性,巴菲特的29.6%,几乎是指其全部资产的上涨;而某人赚了80%的股票,也许只占其资产的不到10%。

所以PV(现值),需要基于整体资产。

但是大多数人或者企业,无法做到这一点。

何谓好生意?是指过去的要素(不止是钱)可以积聚成更强的、可持续的组织系统能力。

苹果厉害的地方是,其卖出去的大部分设备,都还在继续为其赚钱。别人卖一个手机赚一个的钱,苹果种下了一片名为IOS的森林,里面的树木多达十几亿,而且还在快速蔓延,并且越长越高。

“出卖时间”赚的钱,烧饼一张一张地做,只与一个人的单位时间创造价值有关,尽管一个人的能力也可以累积,但却不能像资产的累积那样可以指数级增长。

至少钱睡觉的时候可以赚钱(也可以亏),而出卖时间赚钱的人睡觉(指普通的睡觉)的时候无法赚钱。

从这个角度,倒是可以重新理解一下断舍离:如果一样东西,或者公司的某些业务和资源,将来要是不能创造大于成本的价值,就该扔掉。

有人买股票的时候喜欢用“捡烟蒂”的方法:你看这个公司的现金和房产价值比股价还高。

可是,你买股票其实是投资于其赚钱能力,账面价值没啥用,除非可以清算。

要是那些现金和房产不能成为复利公式里的PV(现值),不能够随着时间越滚越大,其实并无意义。

进而,PV(现值)需要是值得复制的独特价值。

以及,复利公式,总是要基于那些最基本的“出卖时间”的劳作。就像亚马逊的仓库员工和快递员。

三、增长比例

增长比例i是一个动态的数值。

在一个人或者一个公司的复利公式里,前面相当一部分是为了让i变成正数。这是一个不断学习、不断试错的求解过程。

对于创业者而言,就是需要做到在PV(现值)变成零之前,找到大于零的增长比例i。

即使好不容易变成了正数,i还是会起起伏伏。

所以,现实中i可能是正数,也可能是负数。最终计算出来的FV(未来价值),是一个统计学的结果。

同样,i也与资源的配置有关。例如,某个投资年回报达到了100%,但是只占用了10%的资金,在整个复利公式里i就变成了10%,而非100%。

在一个概率化的世界里,复利的计算会稍微复杂一点儿,在下面一篇文章里会详细介绍。

四、重复的次数

1964到2021年间,伯克希尔实现了3.64万倍的市值增长,而标普500指数收益率“只有”302倍。

这期间,伯克希尔的年化回报率约为20%,标普500指数则为10%。

活得久,重复得够多。

复制,是DNA、工业化、金融、计算机、AI、模因等等最主要的力量之一。

重复的另外一个关键词是:自动化。

五、乘号

全世界所有人的头发的数量相乘,结果是多少?

是零。只要有一个人没头发。

这是复利公式的残忍之处。

乘法将我们的时间和资源连接起来,这里面有并联,还有串联。但最后都可以用复利公式来计算。

复利不只是相乘,还能产生网络效应。

为什么大多数人并没有亲身体验复利的“神奇”?

因为神奇的复利,来自涌现。

复杂系统的一大特点是:整体大于部分之和。

每一个乘号,就是一次决策。

单次决策发生之时,需要是无记忆的,甚至是对上一个乘号的抛弃。

但是每次决策必须基于整体资产。

六、全局观

复利公式为我们提供了一个框架和坐标系。

时间的大局观,空间的大局观,资源的大局观,以及自我演化的大局观。

这种大局观,如果可以用计算和数字来做辅助,会更直观,更理性。

七、健壮性和稳态

复利公式是由很多个乘号串起来的,本身非常脆弱。

所以,首先要活下来。

但是单纯想不死,可能会导致什么都不做。为什么绝大多人是随波逐流的普通人?因为这样做活下来的成本最低,挂掉的风险相对(只是某个局部环境的相对)也小一些。

如何既不出局,又不旁观?

一个人如果想要构建自己的复利公式系统,需要具有健壮性,以实现稳态。

健壮性,是一个计算机词汇,简单说就是皮实,有韧劲儿,适应性强,小强精神,反脆弱。《园丁与木匠》也特别将这个词作为一个孩子的最重要的品质之一。

八、串起来的自我

一个人并不是在时间的长河里穿行,而是很多个不同时间的“我”被时间串起来。

大多数时候,我们的完整性和连续性,只是一种幻觉。

主动意识,把握自我,独立思考,其实就是刻意在人生的关键节点,设置“决策点”,每一个决策都是离散的,而非是踩西瓜皮。

靠运气赚钱靠实力亏掉,竭力维护自己的正确,不管对错死磕到底,都是因为忘记了:决策只与未来有关,过去的“你”要么是存量资源,要么是沉没成本。

串起来的自我,还有一个“超我”,又或是《悉达多》里的“神我”。

九、资源平台

不管是公司,还是个人,有没有一个资产平台,来沉淀自己的资源,并且基于这个平台来滚雪球,是能够实现复利效应的关键所在。

日拱一卒无有尽,功不唐捐终入海。

这个“海”,就是资源平台。

“日拱一卒”,是一个增厚资产、配置资产的过程。

  • 有些公司烧钱,烧出来的是资产;

  • 有些公司烧钱,烧出去的是费用。

你需要有一个资源平台--可能是你的名声,你的一个视频号,你的公司,你创立的品牌,把你的所有努力和付出都可以装起来,以此作为滚雪球的内核。

当然,前提是你的专业和独特价值。

十、自我的进化系统

对于个人而言,你的核心资产是你自己。

将自己视为可以不断优化升值的资产,是复利公式的灵魂。

复利公式,是基于时间轴,对一个人或企业的“资产、认知、劳作”的持续复制。

这个复制是动态的,环境充满了不确定性,热力学第二定律处心积虑地想要拉慢你滚雪球的速度。

自我的认识,可能是复利公式里最重要的隐藏要素。

复利公式里的一个个乘号,其实就是一个人的自我进化过程。


以上内容,将会在《中部分:复利的公式》和《下部分:复利的本质》里详细展开。

接下来,是本系列文章的上部分:复利的谎言。



复利三部曲:上部分

复利的谎言

真相 1

世界被随机性主宰

未来是极度不确定的。

并不存在一个清晰的轨迹,让你像爬坡一样每天进步一点点。

先来看看随机游走假说

这是金融学上的一个假说,认为股票市场的价格,会形成随机游走模式,因此它是无法被预测的。

  • 1863年,法国的一名股票掮客朱利·荷纽最早提出这个概念。

  • 1900年,法国数学家路易·巴舍利耶在他的博士论文《投机理论》中讨论了类似观念。

  • 另一条主线是,爱因斯坦在他1905年的一篇论文中,从物理界的角度出发研究了“随机过程”,揭示了布朗运动,间接证明了原子和分子的存在。

  • 回到金融。又过了整整半个世纪,1953年,莫里斯·肯德尔提出:

  • 股票市场价格的变动是随机的主张。

  • 1964年,史隆管理学院的保罗·库特纳出版了《股票市场的随机性质》。

  • 1965年,尤金·法马发表了《股票市场价格的随机游走》,正式形成这个假说。

  • 1973年,普林斯顿大学波顿·麦基尔教授出版了《漫步华尔街》。

我很早以前看过这本书。很坦率地说,极少有人能够第一次就读懂并接受麦基尔苦口婆心的观点:别瞎折腾了,买点儿指数基金吧!

即使你读懂了,也不甘心照他说的做。

这本和我一样老的书里,许多洞见今天看起来也闪闪发光,例如谈及对基本面的专业分析未必靠谱,作者写道:

无数研究都显示了与此类似的结果。放射科专家在观察x光片时,竟然让30%具有肺病症状的光片从眼皮底下大大方方地溜走,尽管这些x光片已清清楚楚地说明了疾病的存在。

另一方面实验证明,精神病院的专业人员竟然不能把疯子从智者中分离出来。

随机性是个太大的话题。

笨人很难理解随机性这回事,而聪明人总觉得自己可以控制随机性。

例如,我在澳门赌场里观察了一阵子,发现在押大小的赌桌前,假如连续出现了十次大,那么:

  • 新赌徒们就会继续跟着押大,认为大的火气正旺;

  • 老赌徒们则会押小,他们认为根据大数定律出现小的概率更大了。

可惜,二者都错了。新赌徒们迷信,老赌徒们犯了“小数”的谬误。

一个公正的大小游戏,每一次或大或小是没有记忆的。

对于随机性里关于“无记忆”的这部分,人类的大脑很难接受。

例如,假如让你扔100次硬币,下面哪个结果更“真实”?

  • 上图左侧是请某个人类“随机”画的,是有意识的随机;

  • 上图右侧是真正的随机(应该是模拟的)。

看起来,是不是左边更随机一些?

因为右侧有太多“连号”,看起来不够随机。

实际上,恰恰相反。

这就是人类对随机性的偏见之一。

世界是随机的,并不符合“决定论”,更不是线性的。

“复利思维”为什么看起来如此有吸引力呢?

因为“复利”制造了一种虚幻的确定性。

我们的工作、生活、投资,大多是通过寻求事实和真相,来寻求生活中的确定性。

在漫长的进化过程中,大脑逐渐变成了一部预测机器,它通过对过去的总结和对未来的想象,来分配资源,采取行动。

但是,什么是确定性?

假如你不能在某个“确定性”之前,加上一个概率数值,那么这个确定性就是一个大坑。

有次我听见儿子在打游戏的时候,和别人说“百分之百确认”,就很认真地对他说:

记住,以后不要说百分之百确认,哪怕某件事你非常非常非常确认,你也只能说我99.999%确认。

进而,你对于事实的“确定性”的判断,本质而言,其实只是某种信念。

人类事务,就是由一大堆信念在随机性的沙滩上堆砌而成的。

真相 2

连续性很难实现

复利有一个重要的假设,那就是连续性。

只要你每年赚26%,连续十年,你就可以......

下面,我们来看看连续性有多难。

我在《机会泵:如何管理你的运气?》一文里写道:

你有没有想过,为什么现实中很少有福尔摩斯?

通常而言,福尔摩斯的神奇之处,在于他能够做一连串推理,大致结构是这样的:

因为A,所以B;因为B,所以C;因为C,所以D;因为D,所以E......

所以,凶手就是大魔王!

之所以极具戏剧性,是因为上述一系列推理,就像杂技团的叠罗汉,叠得越高,越有冲击力。

然而,现实中很难见到杂技团的这种极度不稳定结构。

我们算个简单的账吧:

假如福尔摩斯的每一步推理的靠谱度高达80%(这算料事如神了吧,有这种预测能力去炒股票的话很快会成世界首富),那么从A推理到E的靠谱度,就是:

80%✖️80%✖️80%✖️80%=40.96%

也就是说,即使每次推理的准确率再高,经过多个环节的叠罗汉,也变成不那么靠谱了。

对于随机游走的股市投资而言,“连续性”更难实现。

别说连续十年每年回报达26%,就连年化10%,也没多少人做到。

有人根据wind数据分析,全市场只有33位基金经理,连续十年做到年化收益率超过10%。

那么私募高手们呢?

据统计,10年期年化收益率超过10%的私募基金经理,仅有37人。

过于简化的复利,极大地高估了“连续性”。

俗话说:一年翻一倍,容易,三年翻一倍,难。

时间并不是复利的朋友,更多时候是敌人。

  • 时间“有先有后”的特性,让我们容易将先发生的作为因,后发生的作为果。

  • 时间“自动驾驶”的特性,让我们容易以为事件的发生就像将一个雪球滚下山坡。

然而:

  • 时间的先后次序,并不能决定前后的因果关系;

  • 时间的连续性,更不能成为事件连续性的燃料或证据。

休谟早就说过,这么想是很幼稚的。

作为“致富工具”的所谓“复利思维”,按照休谟的话说,是取决于我们的情绪、习俗和习惯,而不是取决于理性,也不是取决于抽象、永恒的自然定律。

让我截取休谟的一段话,来击碎复利的“连续性”谎言:

“我们就可以问,它包含着关于数和量方面的任何抽象推理吗?没有。

它包含着关于事实和存在的任何经验推理吗?没有。

那么我们就把它投到火里去,因为它所能包含的没有别的,只有诡辩和幻想。”


真相 3

现实是不均匀的

复利的神话里,还包含着一个假设:

这个世界是均匀的。

然而,现实不仅是不均匀的,而且连“不均匀”的那部分,也很不均匀。

这并非绕口令,而是聪明人对“不均匀”这个概念的多层级理解。

  • 第一层级:理解人有悲欢离合,月有阴晴圆缺;

  • 第二层级:聪明人试图用“正态分布”来驯服随机性;

  • 第三层级:理解幂律和肥尾;

  • 第四层级:概率与赔率的不对称性。(这是下一节的内容)

复利神话里描述的那种“每天进步一点点、每年赚一点点,就能成长为巨人”的场景,在现实中并不会出现。

从量变到质变,并非是功到自然成,而是“成事在天”,无法设计,只待“涌现”。

确切说,在现实世界,99%的时间你会感觉一无所获,只有那1%的时间会感觉到收获的喜悦。

据统计:从2008年11月27日到2018年11月27日,标普500指数从887.68点到2682.20点,涨幅达202.16%。

但是,如果错过了其间涨幅最大的20个交易日,收益就只剩下31.15%。

如果错过这20天,就错过了10年超级大牛市。问题是,你无法知道是哪20天。

反之,最糟糕的日子,也是密度极大,破坏性极强。

许多聪明人都是一直在赚钱,而且赚得貌似非常稳定,但却会在某一把因为极小概率事件的发生而亏掉所有的利润。

即使聪明人理解了随机性,也会过于相信正态分布的钟形曲线,而忽视黑天鹅出现的频率以及导致的破坏。

  • 有些事情是正态分布,或者是薄尾,例如人的身高;

  • 有些事情是幂律分布,或者是肥尾,例如人的财富。

正态分布与幂律分布最大的区别在于,某些现象中,正态分布严重低估了极端事件发生的概率。

再比如,当奥巴马说“我国经济09年以来增长13%”时,有可能真相是:

  • 美国人只有最富的1%收入增长了;

  • 剩下99%的人收入反而比之前略微下降。

原因是:

  • 财富的分布并非正态分布,而是幂律分布;

  • 美国1%最富有的家庭拥有的财富占美国家庭财富总额的34.6%。

我隐约觉得,复利神话给人带来的错觉,可能与“小数法则”有关,同是赌徒谬误。

反过来说,我们在有限的空间、有限的时间、有限的样本量下,高估了大数定律的作用。

大数定律依然起作用,但收敛得可能很慢。如凯恩斯所说的,市场非理性的时间比你破产的时间要长。

为了不错过那决定了大部分收益的“20天”,你也许可以用指数基金来长期定投,正如博格所说,别去草堆里找针,干脆买下整个草堆。

但是,万一你选错了草堆呢?

不确定性的一部分,正是分布的“不均匀”。

打个比方,就像你开辆车,打算来一次数千公里的自驾之旅,计划一天五百公里,然后艰难而快乐地抵达目的地,享受挑战自我的乐趣。

结果呢?也许前三天走得好好的,第四天就陷入一个沼泽地,完全动弹不得。

我想过一个问题:

假如一个难题是均匀的,那就不算一个真正的难题。

例如,我每天做一百道围棋死活题,一年我就可以升两段。这并不是一个难题。

问题是没有这样一马平川的难题。

假如有,围棋可能就不是一个很难的游戏了。

其实,AI就将围棋变成了一个均匀的难题。

所以满大街都是随便灭掉人类冠军的围棋AI了。

又比如“戈壁挑战”那种人造的均匀的难题,也许只是另外一种精神按摩的商务人士广场舞而已。


真相 4

回报是不对称的

我们的世界有太多对称性,例如对称的身体,好与坏,阴与阳,正与负,人类对“对称性”也有很高的期望值。

复利神话,也包含了“对称性”的幻觉。

然而,由于以下两个关于“对称性”的真相,复利神话被戳破了:

1、现实世界里,财富的委托代理机制的权利和责任是不对称的;

2、在数学上,不懂期望值会导致概率与赔付之间的不对称。

塔勒布在《非对称风险》里,提及了人类事务的对称性原则,包括公平、正义、责任感、互惠性。

他尤其嘲讽了金融业的高管们拿别人的钱冒险赚自己的大钱。

该书译者这样写道:

在权利和责任不匹配和非对称的委托代理机制下,代理人只会考虑如何尽可能地延长游戏的时间,以便自己能够获得更多的业绩提成,而不会考虑委托人的总体回报水平。

塔勒布从数学的角度,在概率密度函数中突出了“矩”的概念,揭示了看似能够产生“长期稳定回报”的投资策略其实隐含了本金全损的巨大风险。

看起来大概率低风险的收益,由于不对称性(既有机制上的,又有期望值上的),忽视肥尾和黑天鹅,委托人最终会因遭遇爆仓风险而损失全部资产。

戴国晨在解读《肥尾分布的统计效应》时总结道:

1、重视概率忽视赔付在肥尾条件下会导致更大的问题。

2、肥尾条件下对实际分布估计的微小偏离都可能带来巨大的赔付偏差。

第一点好理解。例如我最近没时间下棋,但会在网上看高手下棋并虚拟下注。我并不是总押获胜概率更大的棋手,而是关注赔率,也就是计算期望值。

从投资看,就是:

  • 一个大概率赔钱的策略不一定是糟糕的策略,只要没有破产风险且小概率能获得巨大收益即可,如尾部对冲策略(例如Universa);

  • 一个胜率99.99%的策略也不一定是好策略,如果不能完全规避破产风险,前期盈利都会归零,如杠杆统计套利(例如长期资本)。

关于第二点,塔勒布给出的是数学解释:

由于存在非线性关系,市场参与者的概率预测误差和最终赔付误差完全是两类分布,概率预测误差是统计量,在0到1之间,因此误差分布是薄尾的,而赔付的误差分布是肥尾的。

具体到“不对称”的现实中,复利的实现有赖于如下三点:

1、不管多大的利益,都不值得冒“彻底爆掉”的风险。

尽管期望值是一个“简单”的计算,聪明的投资者也会只下注于“正期望值”的机会,但是有时候因为过于在意假如赢了会怎样,而对“假如输了会怎样”心存侥幸。

克服这种心理偏差的办法是:倒过来想。

不是去计算预期实现了有多好,而是考虑预期没有实现有多糟。只有当自己能够承受这种糟糕,才做出决策。

2、对于投资者而言,凸性机会,并不是单一的凸函数,而是凸性机会的组合。

就单一的凸函数来看,复利式的增长,以及“正反馈循环、边际成本递减、网络效应”等因素,会产生凸性。

而现实中,不管是从空间看,还是从时间看,我们更像是选中了一个盲盒,里面有多个凸函数和凹函数。最后赚取的,是一个统计学结果。

所以投资者需要杀伐决断,不纠结于一城一池,知错就改。如巴菲特总说对喜欢的股票永远不卖,可一旦不喜欢了则会残酷清仓。

对价值投资者来说,机会在于被错误定价的凸性机会。

巴菲特如此总结:

你可以有意识地投资包含风险的项目——有很大的可能性会带来损失或损害,但前提是:你相信概率加权后的收益将远远高于概率加权后的损失,并且你可以同时投资几个相似但不相关的项目。

3、对于企业家而言,凸性更像是一个概率较低但回报极大的机会。

例如,某个创业机会,成功的概率是5%,但回报可能是1000倍。

这类小概率大赔率的“馅饼”,来自:

绝大多数人都过着随波逐流的日子,都想着大同小异的问题,也不愿意承担小概率事件的煎熬,以及转化为大概率的漫长等待。于是大多数人打折甩卖了自己那一点点儿“与众不同”的权利。

而创新的企业家则捡了这个越积越厚重的大机会。

逆向思维的人,因为稀少,所以独占。

对应于投资者的空间(可以理解为某个事件的仓位配置),企业家面对一个小概率大回报的凸性机会的秘密是时间。

时间发挥作用的秘密有两个:

a、预测的趋势一点点从隐性变为显性,进而成为超级大趋势。典型的如特斯拉之于电动车;

b、企业家的使命是通过聪明试错、快速学习,来不断地提升成功的概率,直至成为大概率。企业家的凸性曲线的前半截,可能都是负数。就像亏损了20年的亚马逊。

用一个比喻来对比价值投资者和创新企业家之间的“凸性机会”:

  • 价值投资者有150的智商,却选择去做很多个重复的智商要求为120的事情;

  • 创新企业家有150的智商,却选择去做一件足够大的智商要求为180的事情。

稍微总结以上三节,“连续性”的幻觉,对“均匀性”的幻想,“非对称”的风险和回报,经常是财富的致命杀手。

在这三个“不确定性”杀手的围剿之下,复利谎言走不了多远,就粉身碎骨了。


真相 5

勤奋无法替代思考

希望每天进步0.1%,进而叠加出惊人的复利,与其说是一种幻想,不如说是试图每天都获得“即时满足”。

复利神话,其实是一种反智的智力贩卖。

为什么呢?

因为要获取世俗上的成功,除了运气之外,你需要两个步骤:

1、做正确的事情;

2、把事情做正确。

复利神话过于强调第二点,让人忽略了第一点。

还有那种“每年只要赚26%,十年能变10倍”的说法,除了教会你一点儿小学数学,实在是害死人。

例如谈起定投,假如你在一件错误的东西上定投,做得再正确也没用。

在捕鼠夹上雕花,你做得再极致也没用。

如果你没有方向,任何方向的风都是逆风。

真相 6

“种下树”的惊险一跃

假如说种树是你说的这种“每天长一点点”,然后长成参天大树,枝繁叶茂,那么这里的关键点不是每天长一点点,而是“种下树”这个“充满惊险一跃”的大决策。

这类决策,很难外包。

这方面,投资和教育孩子也有点儿像,你应该做一名园丁,而不是木匠。

在一个充满随机性的世界里,并不存在“设计和打造”的木匠。

对未来的预测,和算命没什么区别。

那些关于所谓周期预测的神话,当事人其实是像算命先生那样,提前说了很多模棱两可的预测。

人们总能从中挑出偶尔对的只言片语。

连一个不走的钟一天都能对上两次呢。

“充满惊险一跃”的大决策,仍然只是一个“信念”而已。

你需要不断更新自己的“信念”,而不是捍卫自己的观点。

并且,你需要有一种这样的心态:种下树,享受这个过程,哪怕你本人不能亲身享受树荫。

真相 7

惊涛骇浪里的贝叶斯

所以,厉害的人,本质上是个贝叶斯主义者。

他们能够做到:

  • 随时在根据当前境况重新判断;

  • 打出无记忆的牌;

  • 不介意自打嘴巴;

  • 勇于自我更新。

他们绝非像驴子拉磨那样,以为只要坚持转圈儿就能每天进步。

例如亚马逊的股票,自上市以来年回报率的确很惊人,但是并不是每天一点点稳定爬坡涨上来的,中途经历过好几次大跌,跌到让人怀疑人生。

那么,复利神话的“死磕到底”,不正好可以让人抓住亚马逊的这种大机会吗?

问题是,你怎么知道自己死死抓住的股票是亚马逊?

在复利思维的“指引”下,有些人喜欢用“不断摊薄、加倍下注”的投资方法。这是一个复杂的话题,但大多数时候对大多数人而言,这是错误的做法。

这两年,特斯拉的惊人反弹,会让很多人再次对“死磕到底”与“抓十倍股”产生幻想。

我只能说,从进化的角度,马斯克是有益于人类的。

市场也给予了马斯克和贝佐斯比巴菲特还高的回报。

但是造物主并不是自上而下地设计物种,而是自下而上地“演化”。

马斯克是个好的创新者,但是他作为你的老公,就未必是好的。

当然很多女士会跳起来反对这一观点。

不过我一贯的观点是,女性在择偶上的非理性,从进化的角度看,也保护了物种的丰富性,并且鼓励了一些必要的冒险家。

这些冒险家以个体的非理性实现了人类群体的理性。


真相 8

牛人需要“北极星+鸡血”

概括而言,“复利思维”鼓吹持续每天进步百分之0.05,只是追求一种所谓确定性的幻觉,稍微遇到一点儿风雨就被打散了。

此外,厉害的人还要能够在没有任何激励、没有任何“进步迹象”的情况下,依然每天打满鸡血。为什么能做到这一点呢?

秘密在于:他们既有心中的北极星,又敢于走入黑暗的森林。

此外,别忘了,我们的人性和社会性。

牛人们会利用人性和羊群效应。

“北极星+鸡血”,帮助他们对资源有更强大的获取能力。


真相 9

一边“滚雪球”一边“补血”

复利思维描述的理想化的滚雪球,在现实中经常会掉血。

高手们需要一边“滚雪球”,一边“补血”。

例如特斯拉在中国建厂,蔚来汽车拿到政府投资。

都是生死一线间的“补血”。

为了拥抱大数定律,你需要长期在场,实现遍历性。

所以投资人要讲故事,要制造自己的传说,要持续募集更多的钱。

他们懂资源聚集效应。

当然,这背后自然还有对“概率权”的理解。

职业投资人和业余投资者最大的区别之一,在于职业选手有源源不断的弹药。

巴菲特有保险公司的浮存金,可以发债(不差钱的他今年四月在日本借了18亿美金)。

他还强调所投公司有很好的自由现金流,他有一个极小的总部,只在乎旗下公司的经理人们把赚到的钱源源不断地交上来。

据知情人士称,高瓴2020年上半年正在从投资人那里筹措可能多达130亿美元的资金,准备抓住疫情之下经济当中出现的新机会。

上一次融资是在2018年,最终募集到106亿美元,创造了纪录。

即使牛如巴菲特和高瓴,也在源源不断地获得资金,为下一次下注准备筹码。

钱多了未必全是好事儿。

只有如此,无限游戏才可以持续下去,英雄一直留在场上,大数定律发挥作用,财富因为遍历性中的概率优势、以及最大化的正期望值得以实现。

这才是“长期主义”背后的道理。

换句话说,他们一边滚雪球,一边不断往前面的雪道上撒雪。

当然,钱多了未必全是好事儿。不过总好过没钱。


真相 10

西西弗斯向上滚雪球

那么,批驳复利思维,这是否定了“滚雪球”的存在吗?

巴菲特不是靠滚雪球成为首富的吗?

人生也许像是滚雪球,可惜不是顺着坡往下滚,而是像西西弗斯那样往山上滚雪球。

而且,这雪球随时可能砸下来。

指数型的崩溃,往往比指数型的增长“容易得多”。

所以,即使我们能够有足够耐心慢慢变富,慢慢成长,也不能令“变富”和“成长”因为“慢慢”而变得容易。 

忘掉复利神话吧。

人类唯一可以什么都不干就增加的,只有年龄(也许还有体重)。

人生就像逆水行舟。

即使你只想做一个防守者,也要主动防守。

为自己种下一些树。

也许惟一能够每天进步一点点的,只有我们的心灵之树。


小结

复利神话,是对“躺赢”的另外一种包装。

很不幸,这个世界并没有“躺赢”这回事。

我们将看到越来越多的复利式增长的传说,甚至包括那些巨无霸公司。

然而,我们并不能以此逆向推导,得出脆弱的“因果关系”,去找成功者的秘籍,指望自己也能实现“十年十倍”的神话。

说起因果,休谟否认“每一个事件都有原因”这一命题的必然性。

那么,怎么看“菩萨畏因,凡夫畏果”?

倒是可以从“可证伪性”来看这句话:

菩萨畏因

  • 别去做那些会炸掉的事情。

  • 但是也别指望能找到并复制“成功者”的“因”。

凡夫畏果

  • 即使你种下了善因,而没有得到善果,甚至得到恶果,也要坦然接受。

  • 那些没有杀死你的恶果,往往能帮助你更新自己的信念。

大多数人是要当普通人的。

幸福的普通人比不幸福的牛人更幸福。

请留意后续的两篇:

《中部分:复利的公式》

《下部分:复利的本质》

本篇文章来源于微信公众号: 孤独大脑

复利的公式(三部曲之2)

“数学很简单。
如果你不这样认为,
那是因为你还不知道人生有多复杂。”
电影《奇怪国家的数学家》里的台词

“并非所有重要的东西都是可以被计算的,
也不是所有能被计算的东西都那么重要。”
据说并不是爱因斯坦说的
平均数
对于如下复利公式,由于现实世界的不确定性,需要重新表述。
由于i是波动的,所以在不确定的世界里,复利的计算如下:
FV=PV✖️(1+i1)✖️(1+i2)✖️(1+i3)✖️……✖️(1+in)
i可能是正数,也可能是负数。
既然i总在变化,该如何计算和评估复利的增长速度呢?
有两种方法,一个是计算不同的(1+i)的算术平均数,二是计算它们的几何平均
假如你花100万买了一只基金,第一年涨了100%,第二年跌了50%。那么你的收益是多少?
  • 按照算术平均数计算:

平均收益率=(第一年收益率+第二年收益率)/2=(100%-50%)/2 = 25%。
  • 按照几何平均数计算:

年收益率假设是x,(1+x1)×(1+x2)=(1+100%)×(1-50%)=1,计算结果,x=0。
也就是说,按照几何平均数算,年回报率是零。实际就是如此。
这里用几何平均计算出来的回报率,就是所谓“年化回报率”。

算术平均,与几何平均,分别表述如下:

概括而言:
  • 当数据最终结果是一个和时,用算术平均数较合适:

  • 当数据最终结果是一个积时,用几何平均数更加合适。

因为复利公式表达的是乘积关系,所以在算增长率的时候,一般用几何平均数,如此更能评估累积效应。
直观上看,算术平均与几何平均二者之间的对比如下:
如上图,有两个数字a和b:
  • 二者的算术平均是(a+b)/2,如图中的红色垂直线AO,也就是圆的半径;

  • 二者的几何平均,则是图中的蓝色垂直线GQ。

计算过程简单而有趣,因为PGQ和RGQ是两个相似三角形(感谢欧几里得),所以:
(PQ➗GQ)=(GQ➗QR)
可得:GQ的平方=a✖️b
从上图我们可知,GQ(几何平均值)总是小于等于AO(算术平均值)。
2016年,物理学家奥利·彼得斯和诺贝尔物理学奖得主默里·盖尔曼写了一篇关于遍历性的论文,里面有个例子:
有个玩硬币的赌博游戏,你投入1元,50%可以得到0.6元,50%可以得到1.5元。
你打算怎么玩儿这个游戏?
根据期望值计算,一半可能性损失40%,一半可能性盈利50%,算下来数学期望是5%。
用流行的话说,这是大概率赚钱的事情,你可以大胆玩这个游戏。
不过,这个游戏有两种玩儿法,确切说,是有两种不同的下注方式:
方式a:你每次都拿1块钱去玩,假设你有无限多个1块钱,你可以一直玩下去,从长期来看你肯定是赚钱的,平均每把用5%的数学期望算是0.05元。
缺点是太慢,而且你必须有足够多的时间能玩下去。
方式b:拿出自己能拿出的最大的资金,然后投入进去。
后面这种玩儿法,就是所谓的All in。看起来极端,其实很多人都是这么干的,我自己也经历过,谁没年轻(蠢)过啊。
我们来做个简单的计算吧。
1、你本金一百万,第一把赢,第二把输,第三把再赢,如此持续下去。
2、直觉上看,100万本金,赢了是赚50万,输了是亏40万,为什么不能玩儿呢?
3、拿张纸,用中国当前幼儿园小班的数学能力计算一下:
100万✖️(1+50%)✖️(1-40%)✖️(1+50%)(1-40%)......
4、一直这么玩儿下去,你会发现,没有几把就没钱了。
这难道不是绝大多数普通人做投资的现实吗?
期望值为正的持续下注游戏,在现实中极其罕见,但是按照上面的下注方法,都会亏掉。
因为决定复利公式连续相乘的累积效应的要素,是几何平均值。
如上面的例子,该游戏的几何平均是(1.5✖️0.6=0.9然后开根号),也就是说(1+i)小于1,增长率i是个负数。
所以,即使该游戏的期望值为正,如果每次All in,仍然会输光本金,从而与复利公式的财富效应无缘。
由此,我们大概也能看出,现实世界的不均匀,对财富的累积效应的致命打击。

空间
复利公式的连续相乘,可以有一个有趣的隐喻。
先说连续相乘的最大弱点。
请问:全世界所有人头发数量相乘等于多少?
答案是零。因为只要有一个人没头发,这一串相乘的积就是零。
所以,多少富豪因为这乘法叠加而归零。
小赌徒是一点点被割光,每次输点儿小钱就跑,一次割一点儿,永远无法变富;
而大赌徒是经常赢,长期赢,有时还赢很多,然后因为一把(看似小概率的)巨大的输而被割光。
这是乘法的残酷之处。
再看复利公式:
FV=PV✖️(1+i1)✖️(1+i2)✖️(1+i3)✖️……✖️(1+in)
两个数字相乘,像是二维的矩形的面积计算:
三个数字相乘,像是三维的长方体的体积计算:
四个数字相乘,像是四维的超长方体的什么的计算呢?
如上图:从三维投影看,一个在四维空间中绕一个平面旋转的四维超正方体。
复利公式的连续相乘,与多维空间的类比,至少可以给我们一个直觉上的感触:
以长方体为例,如果长宽高其中的某一维度归零,这个长方体就被压扁成为二维的矩形,相当于被降维了。
当然,这只是一个好玩儿的比喻。
另外一种对于多维空间的隐喻,是概率论中的样本空间。
样本空间,是一个实验或随机试验所有可能结果的集合,而随机试验中的每个可能结果称为样本点。
例如,如果抛掷一枚硬币,那么样本空间就是集合{正面,反面}。如果投掷一个骰子,那么样本空间就是{1,2,3,4,5,6 }。
有些实验有两个或多个可能的样本空间。例如,从没有鬼牌的52张扑克牌中随机抽出一张,一个可能的样本空间是数字(A到K)(包括13个元素),另外一个可能的样本空间是花色(黑桃,红桃,梅花,方块)(包括4个元素)。
如果要完整地描述一张牌,就需要同时给出数字和花色,这时的样本空间可以通过构建上述两个样本空间的笛卡儿乘积来得到。
(以上名词解释来自百科。)
当一个骰子被抛起来的时候,它未来的可能性,分裂成六个平行宇宙。骰子落入其中的某一个平行宇宙的概率是一样的。
骰子最终会落入其中的一个平行宇宙,例如6。
于是,很多人开始研究:为什么是6?背后是不是有什么规律?大多数赌徒和投机者都是这类思维方式。
出现6的概率是1/6,和最终6这一面100%地出现,是一个极其简单却又只被少数人真正理解的常识。
1/6并不因为100%而消失。
就像有六个你投胎,其中那个“幸运的你”落在6,而另外五个你分别落在了1、2、3、4、5。他们都还在替你承担不幸。
例如,某位老板,靠地产生意赚了大钱。他可以将其理解为是自己的能力,也可以当作是自己的运气,仅仅是骰子落在6这一面而已。
  • 如果他接受1/6这个数字,就知道如果自己再扔一次骰子,扔出6(成功)的概率还是1/6;

  • 如果他只看100%的“成功”现实,他就会认为自己是个扔骰子的高手,下一次成功的概率应该有八九成。

我看见新闻讲一位著名的地产前辈,在住宅开发受阻后,积极转型,尝试了各种新型地产,结果亏成了欠债人。
假如意识到“大多数开发商是因为运气赚了大钱”这一事实,当运气离开时,就应该收手,而非转型。
文艺复兴的西蒙斯说:
很大程度上运气是我有天才名誉的原因。在早上走进办公室时我不会说“今天我聪明吗?”,而是说,“今天我幸运吗?”
难题在于,我们的一生几乎就是一次扔骰子,最多只是扔了几次而已。
样本空间的定义是指所有可能结果的集合,假如一辈子都无法遍历所有结果的可能性,“我”不能尝试每一个平行宇宙里的“每一个我”,概率又有何意义呢?
回到复利公式。
复利,滚雪球,大规模复制,在一个概率化的世界里,某种意义上就是让自己多扔几次骰子,从而让大数定律发挥作用。
有概率优势是一回事,让概率优势呈现于“你”所在的这个平行宇宙,是另外一回事。
职业下注者和决策者们,有机会大量地扔骰子。他们还利用规模优势和风险能力,低价收购被甩卖的概率权,变现(变成确定性的)后再高价卖回给别人。
非职业决策者,又该如何逃脱被概率掠夺的宿命?
秘密在于时间切片,和离散的我。
再看一眼复利公式:
FV=PV✖️(1+i1)✖️(1+i2)✖️(1+i3)✖️……✖️(1+in)
每一个乘号,就是一次下注,就是一次骰子落入某个平行宇宙的过程。对应的,都有一个在某个时间切片上的“我”。
每个“我”,貌似是一个“我”穿越了时间的河流,其实并非如此。而是时间的河流,如同羊肉串的钎子般,将一个个“我”串在一起,决定了“我”的命运,并令“我”有“独一无二地持续存在”这一幻觉。
将每个时间切片上的“我”置入样本空间,是一个巨大的秘密。
大数定律告诉我们,样本数量越多,则其算术平均值就有越高的概率接近期望值。
  • 没有概率优势的庇护,再多努力、再多重复也没用。“拼搏到无能为力,努力到感动自己”只是一个自我安慰。

努力的现在,和幸运的未来,二者之间不是线性的因果关系。
更不对称的是:好的开始,未必就有好结果;坏的开始,结果往往会更糟。
  • 没有大数定律的庇护,概率优势就很难显现出来。

大数定律“说明”了一些随机事件的均值的长期稳定性。
复利公式串起一个个时间切片上的“我”,是将时间视为一种“过去、现在、未来”平铺在一起、同时存在的结构。
如此一来,那一个个时间切片上的“我”,就成为人一生的样本空间里的一个个样本点:
i1i2i3,i4,i5,i6,i7,i8,i9...... }
尽管这是一个太“冷”的隐喻,但是,本文描述的复利公式,将时间的不确定性、空间的不确定性、事件的不确定性,整合到了一个框架里,从而实现了一种全局观。
如果说“人生是一个过程”是一句鸡汤,那么米塞斯所说的“市场是一个过程”则是一种洞见。
当我们在一个完整的概率框架里来思考自己一生当中那一个个“时间切片上的我”的连续性和独立性,就会获得更多的概率权利,也有更大可能性实现富足,并且也能更为有意识地享受人生旅途中的一切。
斯皮茨纳格尔认为,我们必须改变自己的认知维度。专注于当下非常重要,但我们的视野和认知必须从“即期”改为“跨期”。
他将一个光学上的概念用在时间上:景深
景深是指相机对焦点前后相对清晰的成像范围。
我学习摄影的时候,经常看到“用长焦来压缩景深”的说法。
用广角拍摄时,通常会近大远小。用时间来类比的话,就是能够感受过去现在和未来。这类拍摄有身临其境的现场感。
用长焦拍摄时,较远处的远近不一的景物之间的“近大远小”效果会减小很多,像是压缩在了一起。
什么是时间的景深呢?那就是将过去、现在、未来压缩在同一个平面上,然后进行样本空间的时间与空间的置换。
马克·斯皮茨纳格尔写道:
资本具有跨期特征:它的定位和在未来不同时点的优势是核心。时间是资本的生存环境——定义它、塑造它、帮助它、阻碍它。当用一种新方式思考资本时,我们也必须从新的角度考量时间,当我们这么做时,这就是我们的路径,我们的资本之道。
也许一切都和这个充满了未知的世界里的不确定性有关。我们追寻可能性,但又害怕不确定性。
于是,那些能将“不确定性”变为“确定性”的人,仿佛是掌握了炼金术的巫师。

期望值
接下来,是关于复利公式的期望值计算。
期望值,是所有与计算有关的决策的基础。
当然,哪里有不需要计算的决策呢?哪怕不涉及数字,只是在心里权衡;哪怕仅仅是对人性的算计。这些也都是模糊的计算。
对于这个常见的概念,真能理解的人极少。
先看基本概念:
在概率论和统计学中,期望值(或数学期望、或均值,亦简称期望,物理学中称为期待值)是指在一个离散性随机变量试验中每次可能结果的概率乘以其结果的总和。
例如,随机扔一个标准的六面骰子,其结果的期望值是:
但是骰子并没有任何一面有数字3.5。该数值是无限多次重复后,得到的一个结果的平均值。
现实中的不确定性,要远比扔骰子复杂得多,未来的可能性无人能够预测,这个时候,计算期望值,就需要贝叶斯学派的估算,概率代表的是一个人的洞见和信念。
我想用一个简单直接的方式来定义:
  • 期望值为正的,是投资

  • 期望值是负的,是赌博

  • 期望值未知的,是投机

赌场的游戏对于赌徒而言(只要对手盘是赌场而非别的赌客)。几乎全是负期望值。
举一个简单的投资的例子:

某公司要重组,可能成功,也可能失败。

成功的可能性定为大约85%,失败的可能性为15%;

重组成功股价可能上涨3美元,失败则可能下跌6美元左右;

现在股价是30.5美元,值得投资吗?

计算一下期望值:股价可能上涨的幅度是3美元乘以85%,而下跌的风险是6美元乘以15%。  
  • 3美元×85%=(可能上涨)2.55美元  

  • -6美元×15%=(可能下跌)-0.9美元

  • 二者相加,该投资的期望值是每股1.65美元 。

从结果看,该公司可以投资,如果重组时间不那么长的话。
但是,期望值为1.65美元,并不等于15%的事情不发生了,投资者还是有不小可能性每股亏掉6美元。
不过,作为职业投资者,因为有很多类似机会,所以长期来看,可能还是赚的。
以上是从单一的“静态模拟”来计算期望值。
在复利公式里,尤其是在不确定世界的复利公式里,期望值的计算会稍微复杂一点儿。
举例:若一投资有60%的获胜率(p = 0.6,q = 0.4),而投资者在赢得赌局时,可获得一赔一的赔率(b = 1)。为了避免爆掉,所以下注者每次会控制下注比例,假设是x。
单次的期望值很容易计算。那么,如果连续下注n次,该如何计算总的期望值呢?
我们做一个简化的模拟:假如连续下注10次,每次都投入所有资金,其中赢了6次,输了4次。
假如赢了,总资金变成原来的(1+x)倍,假如输了,变成原来的(1-x)倍,所以10次之后(简化的模型),总资金会变成的倍数是:
(1+x)✖️(1+x)✖️(1+x)✖️(1+x)✖️(1+x)✖️(1+x)✖️(1-x)✖️(1-x)✖️(1-x)✖️(1-x)
所以,该游戏重复n次的期望值计算是:
f(x)=(1+x)^(n✖️0.6)✖️(1-x)^(n✖️0.4)
如上,这其实是一个概率世界的复利公式。
首先,这里仍然有一个重要前提:期望值为正。否则就是赌博。
这时,我们会发现:
  • 下注比例x太小,赚不到钱;

  • x太大,可能会爆掉,以致无法实现遍历性而“享用”正期望值。

有没有一个方法,可以控制x的数值,就像用开关控制水量一样,调节每次下注的比例,在确保不会爆仓的前提下实现收益最大化?

凯利公式
上一节游戏里重复n次的期望值计算是:
f(x)=(1+x)^(n✖️0.6)✖️(1-x)^(n✖️0.4)
对这个概率世界的复利公式,我们的目标有两个:
1、别让(1-x)变成零或小于零;
2、在1的前提下令f(x)最大。
当年索普发现了赌场21点游戏的漏洞,让自己能够实现正期望值的回报。但仍然要面对具体下注多少的问题。
香农向索普推荐了自己同事凯利的一个公式。
与索普自己的信息熵公式有点儿像,凯利公式是对概率世界的复利公式取对数,然后求极值。
凯利公式的目标是:最大化资产的增长率,也即最大化对数资产的期望值
因为对数增长率,能够更好地反映复利的概念。
设开始时的资产是1,每次下注的比例为f,有p的概率会以b的赔率赢钱,资产的对数期望值计算如下(就是对概率下的复利公式两边取对数的结果):
要找到最大化这个期望值f,只需E对f的导数值为零:
求解上述方程,得出凯利公式:
用图形,更容易看出凯利公式的工作原理:
横坐标是下注比例,纵坐标是回报。
  • 下注小,安全但回报低;

  • 下注大,极可能回报也不高风险却很大。

凯利公式帮助我们找到图中的峰顶,对应的就是最佳下注比例。
人的一生,是由很多个下注串起来的。虽然不像过玻璃桥那么非死即活,但一样充满了巨大的不确定性。
每次做决策时,计算一下输赢的概率,算一下回报,并且随时提醒自己控制好下注的水龙头,千万别All in。
进一步来说,资金加杠杆相当于凯利公式的反向操作:
  • 凯利公式根据胜率和赔率,将下注比例控制在0和100%之间;

  • 资金加杠杆则是将下注比例放大至超过100%。

凯利公式的工作原理图最上方的那个点,也许是我们想在人生中找寻的位置:活下来,活好
凯利公式的不足之处是:
1、必须基于正期望值。然而正期望值、并且回报又不可怜的投资实在太罕见;
2、可能导致总资产的大幅波动;
3、适合于长期的、相对高频的投资;
4、很多时候胜率和赔率都需要靠“主观概率”,靠专业洞察和信念。
i
凯利公式的调节下注比例,相当于为i加上了一个阀门。
如下复利公式,i是不确定性的,是概率化的。
财富的增长,个体的成长,公司的增长,关键在于根据i来为未来分配资源。
价值投资者的策略,是找寻被低估的i,可以持续很久的i,然后享受时间带来的n次方。
  • 安全边际,讲的是被低估的i;

  • 护城河,讲的是如何守护i。

无形资产、转换成本、成本优势、网络效应,都能令i更持久。
对于投资而言,关于一家公司未来的增速,也就是i,对其作出判断,不仅是概率化的,而且是主观的。
由于股票过去的表现并不代表未来的趋势,并且数据量有限,所以频率派的概率,让位于贝叶斯的概率。
如第二节所述:
  • 在这个不确定的世界里,我们不得不用概率去理解和计算,即使绝大多数时候只能用“主观概率”。

  • 人的一生太短,选择太少,无法回溯,既不能确认期望值,也不能通过大数定律让命运趋近于期望值。

贝叶斯概率有较小的数据需求,可以基于先验概率,利用新的信息进行推导。但是就投资而言,仍然对先验概率有较高要求。
这就是价值投资反复强调要投资于“懂”的公司。不仅是懂公司的商业模式,懂公司的文化和管理层,还要懂经营的本质。
所以巴菲特说自己是企业家,只是后来用分配资金的方式来经营生意而已。
在他管公司的经历里,这位看上去慈祥的书生相当犀利,出手狠辣。芒格也有过生意经验,但他是律师出身,优势仍然在于当军师。
如果说投资者一开始就要找寻有优势的i,那么创业者的i就只是一个小苗,甚至只是一粒种子。
对于创业者而言,i很少一开始就是正的。
创业的从零到一,本质上是求“i”的解。开始是负数没关系,关键是能否在钱用完之前发现正的“i”。
i像是一粒种子。
如同乔布斯所说:每个伟大的事物都有一个脆弱的、微不足道的开始。
以下,是一家“完美”的创业公司的i曲线。
i是变化的,开始不仅很小,而且可能会变成负值。
创业公司,就是围绕关于某个i值的假设展开,然后尽快去验证这个假设。一旦在市场的验证中实现了i的正值,再开始大规模复制。
如上图i值的曲线,i还会经历一个下跌的过程,这正是绝大多数创业者都经历过的艰难谷底。
由于i是一个比例,所以为了求解这个比例,创业者应该尽快拿出最小化产品原型,更不必在乎完善度和完美。
在谷底,假如找到了反弹点,意味着创业者的“价值假设”通过最小化产品得到了验证,然后再快速迭代,逐步放大规模。
如上曲线,符合《资本的秩序》里所说的迂回之道。
该书作者通过对比,介绍了针叶类植物的迂回策略。
  • 被子植物 (如枫树橡树等)的直接生长策略

  1. 叶宽更高效获取阳光,花吸引昆虫;

  2. 在水、土壤和阳光的激烈竞争中快速成长繁衍;

  3. 过度生长的生态机制,森林茂密变成越来越危险的“火药箱” ;

  4. 火灾爆发终将被毁灭 。

  • 针叶类植物 (如针叶树等)的迂回生长策略

  1. 叶片窄而细,生长缓慢落后;

  2. 让出阳光普照且养分资源丰富的地区,去岩石较多但阳光充足的地方,退而求其次,避免直接竞争;

  3. 恶劣的环境不断优化针叶树进化的基因:抗旱,抵御虫害的厚树皮,遇到高温和火焰才会裂开的松果等;

  4. 当野火毁灭森林时播下种子,在肥沃的灰烬中成长并得以扩大生存的领地。

由此,针叶树后来居上并最终超过了被子植物。
斯皮茨纳格尔在《资本的秩序》引用了老子的话,并认为要用逆向思维来探寻最佳路径:得来自失,未来的收益来自当下的付出和准备。
上面i的曲线图,不仅呈现了迂回策略,表达了“势”和“力”之间的转换,还有一个重要的特点:
它是一个凸函数。

凸函数
指数增长模型,就是一个典型的凸函数模型:
在上面的公式里,时间t的对应值是Vt,其初始值为V0,且以速率R增长。
凸函数是指上境图(图像上方的点的集合)为凸集的一类函数。换言之,其图像上,任意两点连成的线段,皆位于图像的上方。
凸函数像碗,凹函数像帽子。
(我们的有些数学教材里对于凸函数和凹函数的定义是相反的。)
凸函数的斜率是递增的:函数值随度量值的增加而增加。
(上述来自《模型思维》一书。)
最近以及未来数十年,数字化产业突飞猛进,造富无数,底层原因之一是摩尔定律惊人的凸性。
  • 假如你每天用时间换钱,你的财富图形是下图左边这样的:

  • 凸函数的图形是这样的,例如摩尔定律,又或是亚马逊的股价:

  • 凹函数的图形是这样的,例如赌博,或者胡乱投资:

《被平均的风险》一书,用房地产市场的抵押贷款投资组合,来描述了凹函数。
假如市场的房价有涨有跌,而平均房价维持不变,那么,你认为该投资组合的利润图会是什么样的呢?
在下面的例子里,一半的房价上涨8%,带来不足5%的利润增长;另一半的房价下跌8%,带来的利润下降高达40%。如下图:
(上述图片来自《被平均的风险》一书。)
结果会如何呢?风险远比表面上看起来大得多。
剑桥大学教授朔尔特斯给出了一个有趣的思考模型:
请绘制一幅你的商业计划价值与不确定性数据可能价值的对比图。如果它对你“微笑”,这是一个好消息。因为从平均价值来看,你的商业计划将会比以不确定性数据的平均值为依据制订的计划更有优势。
投资也是同理,试着画一个最好的事情和最糟的事情发生时的价值曲线图,看看它是在微笑,还是在哭丧着脸。
凸性,似乎是投资人手中的圣杯。有著名投资人认为,赚钱的秘密,就是找到一堆被错误定价的凸性项目组合。
然而,在现实世界里,凸函数微笑的嘴角无法一直向上,如芒格所说:
一切无法永远运动下去的事物总会停下来。

S形曲线
在孩子的幻想里,在成年人的发财梦里,在不切实际的商业计划书里,常能看见这样的想法:
  • 想象一下我们一开始有一对雄性、雌性兔子。然后开始生小兔子,一窝有4到10只小兔,大约一年有6到8窝;

  • 小兔子6个月又可以开始生兔子,重复上面的惊人增长速度;

  • 假如一只兔子赚一块钱,这不很快就赚到百万千万了吗?

其实,兔子的繁殖还不算厉害的。 以E. coli 细菌为例,我们可以从仅仅一个细菌的自我复制开始,假如维持一开始的增长速度,36个小时后细菌就会覆盖整个地球表面,足足30厘米厚!
为什么上述事情没有发生?
原因是:在大自然中,种群可能会成指数增长一段时间,但它们最终会受到资源供应的限制。
这种增长,被称为自我抑制性增长
指数增长形成 J形曲线,而自我抑制性增长则形成 S形曲线。
逻辑函数逻辑曲线,是一种常见的S函数,它是皮埃尔·弗朗索瓦·韦吕勒在1844或1845年在研究它与人口增长的关系时命名的。
一个简单的逻辑函数可用下式表示:
经济学家斯坦恩曾说过:如果某些事物不能永远长存,那么它终究会停下来
宇宙间无处不在的墨菲定律来到了复利公式,将指数增长那要翘上天的曲线摁了下来。
于是,为了对抗熵增,人们试图找寻第二曲线。
我喜欢查尔斯·汉迪第二曲线原则背后的思想起源,他认为:“绝大多数新事物偏爱的是少数人而不是大众。社会是不平衡的,权力的分配是不公平的。”
尤其是,信息经济正演变为“赢家通吃”,像亚马逊、Facebook和谷歌占据了统治地位并阻拦着任何胆敢入侵的新加入者。
查尔斯·汉迪的美好愿望是:“如果我们想拥有一个让未来造福于每一个人而非享有特权的极少数人的机会,那我们就需要挑战正统,有一点梦想,超常思考并且敢于尝试不可能。”
既然彻底的改变是必要的,那么应该如何做呢?
查尔斯·汉迪给出的建议是:
  • 开辟一条与当前完全不同的新道路;

  • 对熟悉的问题拥有全新的视角;

  • 实现托马斯·库恩所称的“范式转移”。

然而,美好的愿望,总是艰难的。甚至暂时看起来是错的。
我们来看一个现实世界里的第二曲线:
上图是微软的股价图。
  • 第一曲线,是一个典型的指数增长,直至2000年达至峰值。

  • 随后,是长达十余年的原地踏步。这中间微软传出来的几乎都是坏消息,似乎干啥都不成。

  • 大约是2014年前后,萨蒂亚·纳德拉接任CEO,微软开始“刷新”,开始了第二曲线。

  • 至今,微软再次成为全球市值最高的公司之一。

微软的再次崛起是因为萨蒂亚·纳德拉的“刷新”战略吗?公司发生了“范式转移”吗?
尽管智能云业务成为微软最重要的业务,但是,就“第二曲线”的理论而言,微软恰恰是一个反例:
微软不过是延续了赢家通吃。
信息时代,那些跃上了浪头的超级公司,因为是实现了某种垄断,会滑翔很久,也更容易踏上第二个浪尖。
萨蒂亚·纳德拉继承了前两任CEO的遗产,不去瞎折腾,更加开放,聚焦于微软的核心业务,重振企业文化。
也许这算得上二次发育,但并不是“范式转移”级别的第二曲线。
苹果公司同样如此。
茅台股价的崛起,相当部分原因来自砍掉了那些乱七八糟的茅台红酒茅台啤酒。
我并不因此而反对“第二曲线”的持续创新和自我突破。重点在于:
第二曲线的转折点,也许只是事后回放的时候总结出来的。
还是回到复利公式吧。
FV=PV✖️(1+i1)✖️(1+i2)✖️(1+i3✖️……✖️(1+in)
一个增长曲线,是由无数个乘号构成的。
就像围棋,最终棋局的胜利,是由所有的棋子跨越时间,在整个棋盘上共同发挥作用而实现的。
正所谓“善弈者通盘无妙手”。真正的高手,一整盘棋下来往往平淡无奇,不需要出奇制胜、力挽狂澜的“妙手”。
两个旗鼓相当的高手,在一起很难出现那种“撕逼”的场面,并非高手之间打架的时候比较优雅,而是彼此都算透了各种变化,自然不会去走那些会遭到惩罚的无理手。
同样,一盘棋的胜利,是由“道”而成。假如这条道依赖于某个石破惊天的转折点,那也是因为此前的蓄势和准备。
所以,不管是下棋,投资,做企业,个人成长,关键是:
1、着眼全局,专注当下,盘点过往的整体资产,为未来分配资源,不在乎小得失;
2、去“球要去的地方”,而不是追着球跑;
3、追求全局的连续性(让很多个乘号一起发挥作用)和健壮性(别掉链子);
4、以全局的胜利为估值函数来评估当下要走的一手棋,而非追求妙手和大招。
此外,S形曲线其实也不错。假如通过未来现金流折现计算企业的价值大于价格,一个增长呈S形的公司还是很不错的。巴菲特一直拿着多年股价不涨的可口可乐多少也有这方面的原因。
对于个人而言,适当的时候,放慢速度,享受一下惯性下的滑翔乐趣,也相当完美。

无记忆
着眼全局VS专注当下,二者看起来似乎是矛盾的。
忘掉沉没成本VS保持连续性,好像也是对立的。
这是复利公式的一个关键命题。
假如在第n天,当我们要着眼全局时,看的是下面的公式:
FV=PV✖️(1+i1)✖️(1+i2)✖️(1+i3)✖️……✖️(1+i(n+1))✖️(1+i(n+2))✖️(1+i(n+3))✖️……
我们需要基于过去的整体资产,预测未来,从而寻求当下的最优解。
当我们专注当下时,复利公式变成了:
FV=PV✖️(1+i1)
过去所有的乘积,都被压缩到一个PV里,今天就是增长的第一天。
  • 从感性的角度看,这正是贝佐斯的Day1。

自打第一封股东信开始,贝佐斯就向他的团队强调,要把每一天都当成是公司成立的Day 1。

“虽然我们对未来很乐观,但是我们必须保持警惕并且持续拥有紧迫感,只有这种紧迫感能让我的团队保持在Day 1。”

  • 从理性的角度看,这就是“打无记忆的牌”。

真正的高手,擅长打无记忆的牌。

具备离散状态的马尔可夫过程,通常被称为马尔可夫链。马尔可夫链,为状态空间中经过从一个状态到另一个状态的转换的随机过程。

该过程要求具备“无记忆”的性质:下一状态的概率分布只能由当前状态决定,在时间序列中它前面的事件均与之无关。

无记忆的牌,并非是指抛弃过去,而是指用过去最相关的信息去预测未来。

人是一种惯性动物,对于过去的迷恋不可救药。

这就是俗话说的:自己点的菜,含泪也要吃完。

大多数经济学家们认为,如果人是理性的,那就不该在做决策时考虑沉没成本。

比如你去看电影,会有两种可能结果:

1、付钱后发觉电影不好看,但忍受着看完;

2、付钱后发觉电影不好看,退场去做别的事情。

后者当然更理性。

再比如以下两种情况:

1、你买了一张1000块钱的票去看脱口秀,结果在门口发现票丢了。你会再买一张票,还是扭头回家?

2、你去看脱口秀,去现场买票,发现路上掉了1000块钱。你会再掏1000块钱买票,还是扭头回家?

在一个类似的调查里,结果令人疑惑:

  • 对于1,90%的人认为应该掉头回家;

  • 对于2,50%的人认为应该继续花钱买票入场。

看起来,这二者完全是一回事,为什么会有如此大的差别?

塞勒用心理账户对此作出了精彩的解释:

人们在进行各个账户的心理运算时,实际上就是对各种选择的损失和获益来进行估价的,这个估价行为就被称之为“得与失的构架”。

以上面看脱口秀的故事为例:

  • 当你丢了一张票,再花1000块买一张,你就会觉得自己花了2000块来看脱口秀,太贵了;

  • 当你丢了1000块钱,你并不会太觉得这个钱是用来买票了,虽然会影响心情,但你还是可能会买一张票。

塞勒由此提出:

人们在心理运算的过程中并不是盲目追求理性认知上的效用最大化,而是追求情感上的满意最大化。

在复利公式的现实应用中,我们应该克服这种非理性,去追求理性认知的效用最大化。

打无记忆的牌,正是为了实现这一点。

李录认为投资人应该像个高尔夫球手,应该打无记忆的球。他觉得投资和打高尔夫球很像,你必须得保持平常心,要心绪稍稍一激动,肯定就打差了。 

前一杆跟后一杆没有一点关系,每一杆都是独立的,前面你打了一个小鸟球,下一杆也不一定能打好。而且每一杆都要想好风险和回报。 

一个洞的好坏胜负并不会决定全局,直到你退役之前,都不是结果。而你留在身后的记录就是你一生最真实的成绩,时间越长,越不容易。 

打“无记忆”的牌,不止是控制自己的情绪这么简单。

我将打“无记忆”的牌,分为如下5个层次:

  • 第一层次:当下的无记忆。(控制情绪,保持平常心。)

  • 第二层次:过往的无记忆。(理性对待沉没成本。)

  • 第三层次:决策的无记忆。(重新构建决策点。)

  • 第四层次:已知的无记忆。(压缩过往,“鸟瞰”自己的已知条件。)

  • 第五层次:人设的无记忆。(不要为了人设、为了维护自我干蠢事。)

不要为了人设,为了维护自我,而去坚持将蠢事干到底。

忘掉自己的人设,这可能是“无记忆”最艰难的地方。

因为反人性。

忘掉自己的人设吧,因为根本没人在意。

要坚持的,是去做正确的事情,而不是去证明自己正确。

所以,死磕到底的未必是长期主义,而长期主义高手反而最“善变”。

这方面乔布斯做决策和AI下围棋非常像,有时候看起来非常飘忽,会突然放下某个局部不管,走到别处去了,该弃就弃,绝不纠结。

长期主义不是简单的“坚持”或“连续”。

一个人的连续性,是根据其对目标的连续性来评估的,而不是看其短期行为的连续性。尽管二者很多时候看起来是一致的。

长期主义,还是一个贝叶斯更新的过程。

决策者追求的是大概率靠谱,而不是绝对靠谱,而且这个概率会随着时间不断优化。

长期主义作为一个贝叶斯更新的过程,既是前进,又是进化。

长期主义的本质,是自我的成长。

长期主义坚持的是对“求真”的信仰,而对于“眼前一手”,则敢于随时调整自己的信念。

只有如此,才可能在一个不确定的世界里,实现时间的复利,空间的复利,资金的复利,以及自我的复利。

如此多的道理,用一个模型就可以概述:

FV=PV✖️(1+i1)

1、将过去压缩为PV,该断舍离的,与往事干杯;

2、对当下而言,永远只有一个乘号,一个i。每天都是Day 1。重点不是今天的好与坏,也不是你与别人相比高与低,而是你今天是否比昨天进步了一点点;

3、“昨天的我”和“今天的我”属于两个不同的心理账户,接过他手中的棒,独自向前跑,对的事情坚持,错的事情立即改正。


全局最优
复利公式的本质,是为了寻求全局最优。
有些人为了做到这一点,力求将复利公式里的每一个“✖️”的结果都做到最大化。
现实中有不少这样的人,一分钟都不浪费,见朋友都像医生看病号;寸土必争,每个机会都不放过。
这就是所谓的贪心算法。
然而,尽管有时候,局部最优的累积将得到全局最优,但更多时候并不能实现全局最优解。
即所谓:赢得了每一场战役,却输掉了整个战争。
  • 从空间上,我们要避免陷入局部最优陷阱;

  • 从时间上,我们要警惕过早优化。

先看局部最优陷阱
上图中的黄色箭头,指的是局部最优;橙色箭头,指的是全局最优。
就像有的人,一路拼搏,过关打怪,取得了一场又一场的胜利,终于登上了顶峰。结果发现,自己只是爬上了一个小山头而已。
这时候的尴尬是:
  • 留在小山头上,不甘心;

  • 去另外一个山头吧,要下山然后从头开始爬;

  • 更何况,你怎么知道现在望见的旁边那座更高的山就是全局最高峰呢?

解决办法是:引入随机性
例如,基于蒙特卡洛策略的模拟退火的算法,就是用来在一定时间内寻找在一个很大搜寻空间中的近似最优解。

模拟退火算法从某一较高初温出发,伴随温度参数的不断下降,结合一定的概率突跳特性在解空间中随机寻找目标函数的全局最优解,即在局部最优解能概率性地跳出并最终趋于全局最优。如下图:

关于爬山算法与模拟退火,有一个有趣的比喻:

爬山算法:兔子朝着比现在高的地方跳去。它找到了不远处的最高山峰。但是这座山不一定是珠穆朗玛峰。这就是爬山算法,它不能保证局部最优值就是全局最优值。

模拟退火:兔子喝醉了。它随机地跳了很长时间。这期间,它可能走向高处,也可能踏入平地。但是,它渐渐清醒了并朝最高方向跳去。这就是模拟退火。

(以上三段引自“程序员客栈”网站,作者“智能算法”。)

如此看来,醉拳原来也是有科学道理的。

在没有明确的全局唯一最优解的现实世界,模拟退火算法给我们的启发是:

1、在工作和生活中引入随机性,大胆做一些新的尝试和探索,和自己不熟悉甚至不喜欢的人交流,保持开放性;

2、允许适度的混乱,保持好奇心,大胆走入一个不知道味道如何的小菜馆,主动去犯一些小错误;

3、学习“无用的知识”,在自己的专业的基础上,横向拓展认知空间,保持大脑的冗余状态;

4、增加认知的维度。多学科的学习不是为了集邮,而是从不同维度去切割自己的认知。一个人很难在原有维度发现自己的局部最优陷阱,但是从某一新的维度,则更易证伪自己的最优假设。这正是机器学习中多层神经网络的作用之一。

5、未必是喝酒,可以从文艺作品里,例如电影,诗歌,音乐,去找寻微醺的感觉,点燃自己理性背后的激情,再从无序到平衡;

6、和更优秀(并且真诚)的人交往,找个更高峰、或是不同维度的导师;

7、有些时候,你必须从一个局部最优的山头下来,这并非退步,而是在经历一个“鞍点”;

8、为自己设置一个十倍的目标,甚至是有一个不可能实现的梦想,这样就没那么容易被一个小山头诱惑。

9、一切的前提是,你有能力爬上某一座或高或矮的山头,而非坐在那里空想,否则你从糟糕的现在走出去,更大概率是遇到更加糟糕的境况。

再看过早优化

以色列物理学家艾利· 高德拉特在其管理小说《目标》里,提出了其独创的“瓶颈理论”(Theory of Constraints),开创了新的生产系统管理方法。

他将用户价值流,当作一个互相关联的流程系统,如下图:

任何时候,这条锁链上都会有最弱的一环,如上图粉色部分。如果我们对这条锁链施压,锁链会在最弱的环节处断开。

(我为这里出现锁链而感觉不安。)

所以,如果我们想要让这条锁链牢固,而去加固每一个环节,不仅非常浪费,而且会忽略关键问题。

这就是过早优化陷阱。例如:

  • 创业公司早早设置好完备的部门和岗位,把办公室装修得富丽堂皇;

  • 小孩子把500首唐诗背得滚瓜烂熟,初中生把题库里的奥数题反复刷到一题不错;

  • ......

正确的做法,是正确地定位并聚焦于最弱的环节,才能获得最大的回报。

(在这里需要强调的是,并非一家创业公司需要专注于解决短板问题,而是要去发现整个产业的最薄弱环节,然后以此为突破口,结合自身优势,展开自己的业务。)

作者提及:当我们强化了某个环节后再次对锁链施压时,通常会发现新的最弱环节转移到了其他地方,并且难以预测。

由此,他得出两个推论:

第一,不停地强化某个最弱环节最终并不会产生任何收益,因为其他环节早已取代它成为新的瓶颈,限制了整条锁链的能力;

第二,由于我们无法预知新的瓶颈会转移到何处,所以我们需要对整个系统进行持续监控,不断地定位新的最弱环节。

任何事情,首先是要做对,然后才是做好。

很多人,热衷于在萝卜上雕花,做各种感动自己的表演,以逃避“到底什么是对的”这一真正思考。

就商业而言,做对,关键在于“对客户群和客户需求的假设”是否正确(这就是链条上最脆弱的环节),更进一步,这个假设背后的Why是否合理。

如果源头不对,花心思去包装,去营销,去努力,就是过早优化,把有限的资源花到了错误的地方,一旦受到外部的施压,链条还是从最脆弱的环节断开,这些在不重要环节上的功夫,全都白费了。

对于教育也是如此,如果一个孩子没有动机,没有发现自己热爱的事情,家长凭借自己的想象(极可能是错的或者是忽视未来的),去在某些链条上不计成本地加固,也是过早优化。


复利公式告诉我们:

  • 商业模式是一个系统,人的一生也是一个系统;

  • 我们需要从空间和时间的全局性去思考,避免陷入局部最优陷阱;

  • 让孩子多飞一会儿,想想看,他一生的链条还很长,不必过早优化。

全局思维,系统思考的目的,是为了分配有限的资源。

典型如田忌赛马,处在资源劣势一方的田忌,通过资源在空间上的分配,实现了竞争中的整体胜利。

表面上看是以弱胜强,以少胜多,其实并非如此。田忌并没有让一匹跑得不够快的马突然打了鸡血般突飞猛进,他只是根据全局做了资源配置,从而实现了辛普森悖论式的意外结果。

萨蒂亚·纳德拉接管微软之后,所做的最重要的事情,就是打破了微软原来各个部门各自追求局部最优,从全局思考,重新规划业务,分配资源。

帕累托最优,探寻的是在无序的状态中通过资源分配获得更高的效率 

AI下围棋,并非算透(也无法算透)所有变化,而是每一手棋都把资源配置到相对而言终极胜率最高的那个点。

复利公式给出了一个全局思考的模型:做对的事情,以全局视野,以未来目标做价值评估,将资源聚焦在正确的事情上,并且动态地调整。


关于全局观,复利公式没能表现的有:

1、网络效应。例如马斯克说特斯拉最有想象力的是自动驾驶和机器人出租车,如此一来该公司就拥有了网络效应。

2、复杂系统和涌现。复利公式之外,还有“整体大于局部之和”,以及“涌现”的奇迹。

3、运气。其实,运气总是好,本质上也是大局观好的结果。

这种大局观体现为:

  • 要么是因为Ta一直很聪明地停留在自己有优势的领域,

  • 要么是因为Ta尊重常识、情绪稳定。

现实环境变量极其多,外加人类社会的游戏规则,一个大事不糊涂小事不精明的人,也能通过做模糊的正确的事情,实现持续的运气好。


反向复利
巴菲特和马斯克互相瞧不上,不过在有一件事情上,二者高度一致:
他们都认为核武器是地球上最大的危险。
巴菲特认为:“核战争似乎是不可避免的!人类最终都要面临这个问题。”
作为一个数字狂,他的结论来自计算:
  • 任何一件事情,如果它在一年内发生的几率是10%,那么在未来50年内它发生的几率将高达99.5%,几乎接近100%!

  • 如果我们把这个数字调低,也就是说一年内出现核战争的几率降到3%,那么在未来50年,高达99.5%的比例将下降到40%!

  • 从数字角度上来说,这是一件值得去尝试的事情,毫不夸张地说它可能会使得这个世界变得完全不同!

这是一个反向的复利计算:
  1. 假如核战争每年发生的概率是10%,那么每年不发生的概率是90%;

  2. 50年都不发生的概率是0.9的50次方;

  3. 然后用100%减去该值,得到的数字是99.5%。

马斯克去火星,让人类成为多星球物种,一方面是担心地球被小行星撞击(近期)和太阳没电了(远期),一方面是担心愚蠢的人类在地球上毁掉自己。
为什么一件事情可能出错时就一定会出错呢?难道真有一双无形的手,在宇宙间处心积虑地打翻每一杯牛奶吗?
为什么好事不会出现类似的“自动发生”呢?
理查德·道金斯认为墨菲定律是胡说,因为该定律需要无生命的物体能有自己的想望,或根据人的想望反应。
他指出,某些类型的事件可能一直发生,但只有当它们成为令人讨厌的事件时才被注意到。
比方说,“面包落地的时候,抹黃油的一面着地的概率与地毯的豪华程度呈正比。”那是因为人的损失厌恶的心理感受曲线所造成的。
我偏向于用熵增来解释墨菲定律。
  • 面包掉在地上,正反面着地的概率,是对称的;

  • 好事和坏事,字面上是对称的,概率上并不对称。

热力学第二定律,表述热力学过程的不可逆性——孤立系统自发地朝着热力学平衡方向──最大熵状态──演化,同样地,第二类永动机永不可能实现。
热力学第二定律认为“事物会变得更糟糕”。这似乎是墨菲定律的科学解释:
我们对好的定义,通常构建在某个秩序之上。但物质和能量总是朝着混乱的方向发展,自然变化的根本原因是无序扩散。
然而,生命也恰恰来自于此。我们并不处于一个孤立的系统里。感谢太阳,为地球提供负熵,也感谢宇宙间那些无数个几乎不可能的极小概率叠加在一起,生命得以产生,你我得以出生,成长,相逢。
我喜欢《存在与科学》里的一段话:

然而令人惊讶的是,这种自然的无序扩散可以创造出精致的结构。这种扩散如果发生在引擎中,就可以让发动机吊起砖块建造教堂;

这种扩散如果发生在种子里,就可以让分子形成花朵。这种扩散如果发生在你的身体里,在你的大脑中随机的电流和分子就可能会被加工成想法。

人的一生,以及我在本文中用于隐喻这一生的复利公式,就像是一个以“无序扩散”为能量的机器。
也许用滚雪球形容复利公式很生动,但我们要意识到,现实中的滚雪球,其实是西西弗斯将巨石推上山顶。
这一切的目的何在?意义何在?
假如我和爱因斯坦一样,相信斯宾诺莎所言的那个万物之神,也许会说:造物主创造了人类,恰恰是用来回答这个问题的。
人类存在的意义,就是他们可以去追问自己存在的意义。

最后

落难的天才数学家,隐姓埋名躲在一家顶级私校做警卫。冰冷、木讷的他,与一个放弃了数学的男生意外相逢。原本“只求答案”的少年,跟随数学家学会了正确的解题思路及方法,而在此过程中,少年的人生也慢慢发生了改变。

韩国电影《奇怪国家的数学家》,像是《心灵捕手》里麻省理工教授与清洁工男孩的颠倒版。

数学与人生的隐喻,在文艺作品里,总是离不开天才,尤其是被埋没的天才。

然而,假如人生是一道题,在寻找自己的答案这件事情上,每个人都是平等的。

不存在因为一个人是天才,而比另外一个人有更好的答案。

重点在于,你要找的,不是别人的答案。你的一生就是找寻属于你自己的唯一答案的过程。

电影里,数学家对少年说:重要的不是计算,而是思考。

在这个愈发令人失望的世界里,人们算计得太多,计算得太少;计算得太多,思考得太少;思考得太多,忏悔得太少。

数学复杂,而命运随机。

我在漫长的本文里,用“简单”的复利公式,去探寻可能性、运气、偶然、意义,也许只是一个奢侈的游戏而已。

《奇怪国家的数学家》里,主角引用了冯·诺依曼那句话:

“如果有人不相信数学是简单的,那是因为他们没有意识到人生有多复杂。”

本篇文章来源于微信公众号: 孤独大脑

无岸

致父辈们。

“生他之地不养他,养他之地不留他。”

妈妈曾在襄阳街头为我求到此卦,算命先生也许听出了她的武汉口音,精确地“算”出她的儿子“生于彼处而长于本地”,未来则又在他乡。那个下午,我正在北京的学校里,被裹于青春的泥泞间,并不知自己将会随便买张南下的火车票,在广州一留十六年。对从小就怕热的人而言,这是个有点儿宿命般的嘲弄。

除了被童年记忆虚构过的暑假,我经历过的最舒服的夏天在温哥华,一座被加国人认为很不加拿大的飞城。即使到了六月,城市北边的山尖上依然可见白雪。太阳晒得东西发烫,但只要有点儿阴凉之地,就像有冷气从哪儿漏出来了似的吹在身上。仿佛窝在炉火旁看窗外的冷雨。

我喜欢这有点儿分裂的感觉。

2016年暑假我们去了鲍威尔河,需要坐两次渡轮,开5个小时左右的车。营地不远处有一个小岛,没水没电,却满是当地人的各色度假屋,老外孩子们无所事事地在码头捞螃蟹。

上岛需要坐船。也有人直接从城市飞来。水上飞机降落在湛蓝的海面,徐徐滑至沙滩边,先出来的是飞行员,她亚麻色的头发扎在脑后,眉目清秀神情羞涩,脸颊微红像开拖拉机的三八红旗手。女飞行员身兼数职,从机身下侧拿出乘客一家人的行李箱,挥手说再见,爬回驾驶室,像海鸥一样轻盈地飞去了。

到了晚上,我们在营地围着篝火烤生蚝,海边遍地都是这种柔软美味的动物,坚硬的外壳不能改变它被生吃或被活烤的命运。坡下几个帐篷住着闹哄哄的印度人,于是他们旁边的两拨华人跑过来“避难”。

我因而听到了小A和W的故事,也许还有M。讲述者是位摄影师,移民加拿大前他是位地产商,过去十年拍遍了北美山川。同时期,他的富豪朋友们或者更富,或者“挂掉”了。

摄影师说,他是在一条被称为“死亡之线”的野外徒步路径上遇见小A和W。这条路径以漫长和难走著称,全程需要七天。路线正中,也就是走到第四天的时候,有一个海边的营地,不远处是巨大的断崖,海浪击打着墨绿的岩石。

这个营地有点儿珠峰大本营的味道,驻扎着来自世界各地的怪人,人们疲惫而兴奋。大家都说,至少今天不用再纠结于是前行还是放弃,因为两头的距离都一样。

小A是第六代的华裔,爷爷的爷爷的父亲在上上个世纪从广东来到加拿大BC省修铁路。她不太像一个“黄面白心”的香蕉人,中文讲得很好,不知为何还有点儿江南口音。

W是从中国来的游客,在南方创立了一家科技公司。摄影师对小A和W的相识相恋很好奇,怂恿他们讲自己的故事。那晚星空格外灿烂,没什么风,大海也仿佛搬了小板凳坐在一旁,静静地听着。

所以,确切来说,我是在跳动的篝火边听到一个陌生的摄影师讲他在另外一个篝火旁听到的别人讲的故事。我们盯着噼啪作响燃烧着的木柴,仿佛传说正从另一个火焰里穿越而来。

小A和W相逢于一个BBS,这年头网上姻缘已是常态,不寻常的是BBS算网络古董,更不寻常的是这个BBS的主题是辛波斯卡。小A喜欢这位波兰女诗人对世界的赞叹,例如“我为称之为必然向巧合致歉”。W则感慨辛波斯卡文字里的精确性,例如“我偏爱自由无拘的零/胜过排列在阿拉伯数字后面的零”。

摄影师对故事的这个开头既失望又好奇。他一直坚持用胶片拍摄风景,“胶片让我珍惜每一个按下快门的决策”,而网络爱情通常没有他所钟爱的那类古典美。他好奇的是,小A和W,两个都是黄皮肤然而文化属性迥异的年轻人,在这毫无诗意的年代居然因为诗歌而相识。也许只有诗才有这种张力和黏合力。

假如我正坐在第一堆篝火旁,那么摄影师是在第二堆篝火旁问小A:所以你们相约来走这条死亡之线?小A说,那是上一回了。说完她看W,他不作声。

小A说,在网上聊了3个月之后,她和W决定见面。W见过“死亡之线”大本营旁墨绿色崖石的照片,他对她说,这像是我梦过很多次的地方,我的父亲一定会喜欢坐在这里吹长笛。

然而不能。他的父亲在W十五岁时失踪,有人说他跳了江,也有人说他逃去海外。在欠了一大笔钱之后,这个早年下海打拼了十多年的男人与家人不辞而别,也带走了债主无尽的追讨。

W年少时恨父亲的懦弱,长大后,尤其是自己创业,又隐约感受到他的坚忍。他潜意识里不愿相信父亲自杀,也许他躲在某个地方,例如遥远的澳洲或者北美,做他喜欢的木工,哪怕他再娶妻生子也没关系。他一定喜欢在那样墨绿色的崖石边,吹他钟爱的长笛。

W的故事激发了小A掺杂了母爱的恋情。两人如约成行,走在“死亡之线”的第一天,小A给W讲起了自己的祖先。她的爷爷的爷爷的爸爸1880年来加拿大修太平洋铁路。

“你知道吗?我从来没有坐过那段铁路。”

W问为什么,小A答:“每英里铁轨下都有父辈们的尸骨。”

铁路沿着菲莎河谷陡崖的那一段,风景有多壮美,当年的华工就有多悲凉。两人边走边说,W摘了一朵野花给小A,念道:“远方的战争啊,原谅我带花回家。”小A听出是辛波斯卡的句子,沉重的脸上微微有笑。

直至18岁,小A都没去过中国。因为年代久远,亲戚早已踪迹难觅。刚上大学那年,她去煤气镇看爷爷的爷爷在唐人街的旧居。他是修铁路华人的下一代,境遇并不因为自己父亲的卖命而改善,当时的政府卸磨杀驴,向华工征收人头税。

小A穿过小巷时,看见一家小小的服装店,里面挂着中式裙衫。晚上她做了个梦,梦见自己穿着那样的裙子,走在粉墙黛瓦边的油菜地里。她认定那是自己家园的样子。

“我有家,但没有家园;你有家园,但没有家。”徒步的第三天,小A对W说。

W安慰她,说自己回到老家,早已物是人非,故乡有故无乡。也许像你这样的跨国流浪者反而更懂得家园的意义。

小A问,你的故乡有油菜花吗?W说,有。老家房倒了,池塘臭了,唯有油菜花还和记忆里一样,仿佛江河里不随波浪流逝的浮标。

小A讲爷爷的爷爷的故事:他没机会读书,游手好闲,也不擅干活。一战开打,华人社会的长老们说,也许我们该做些什么。尽管已经付出了很多,受到不公正待遇的华人仍然试图证明,自己有资格生活在大洋彼岸的这片土地上。

100年前的年轻人们对欧洲大陆的遥远战争慌张无措。小A的爷爷的爷爷,出人意料地站了出来说:我去参战。那是人们第一次觉得这个小混混干瘦的身材如此伟岸,陆续有人追随,华人们奔赴前线,为不属于他们的国家,打一场不属于他们的战争。

爷爷的爷爷成了战火中华人小伙子们的领袖,他对每一个人说:要活着回来。他甚至带着一个小分队执行过危险的敌后任务。小A的爷爷给她讲自己爷爷的故事:爷爷一枪都没开过。小A不敢相信。爷爷说,重点在于,他活着回来了。更神奇的是,社区里和他一起去欧洲的十来个年轻华人,全部回来了。他们不辱使命,此后华人的地位逐渐改善。然而,战斗过的年轻人几乎没机会看到,2006年加拿大总理为“历史上向华人征收人头税”而道歉。

第四天,小A和W来到了大本营,死亡之线的正中点,过去和未来的原点。日落时W在崖石边矗立了很久,景色正如照片,绚烂似血,陌生而熟悉的美让人不安。晚上照例会有篝火,也就是本文我烤生蚝的篝火、摄影师的星空下的篝火之后的第三个篝火,在时间线上则排在第一。

我倒不是为了设计什么嵌套式的叙述结构,只是在尽量忠诚地转述摄影师所转述的由小A转述给他的故事。在第三个篝火旁,W感谢小A邀请他来,过去四天的时光是他此生最难忘的经历。小A愣了一下,说:不是你邀请我的吗?

第一堆篝火旁的摄影师说:小A在第二堆篝火旁在讲述这段故事时,W在旁边一直没说话,好像和他无关似的。第三堆篝火旁的小A和W都意识到发生了些状况,假如他们都没有邀请对方,那么是谁设计了这次会面与徒步穿越?

一旦从动机去分析,W立即有了答案。只有一个人会去做这件事,M,也就是W的生意搭档。W想打个电话,小A惊奇地说:你不知道吗?死亡之线的中间五天没有手机信号!

于是谜团似乎有了答案。M有足够的动机和能力来设计这件事,他是名软件工程师,脾气暴躁,一心想卖掉公司,而W不愿意。

W和M有个约定,作为联合创始人,对于任何一方的提议,另一方如果在律师通知两天之内没有异议,就视为默认。一旦踏上“死亡之线”与世隔绝的旅途,W就掉进了M设计好的圈套。

第三堆篝火旁的小A和W,第二堆篝火旁的摄影师,还有第一堆篝火旁的我,都被惊呆了。小A和W回顾两人的网上聊天历程,又发现了一个让人伤感的秘密:两人的相识完全是被M操控的。他黑进了W的BBS账号,和小A搭讪。接下来,M注册了一个假的小A的社交账号去和真的W聊天,又注册了一个假的W的社交账号和真的小A聊天。

第一堆篝火旁的我拿着烧烤钳敲了一下,说:你们知道吗?曾经有个围棋水平很烂的家伙同时挑战两名顶尖围棋高手,还把两人杀得气喘吁吁。他怎么做到的?他在一个对局室和第一个顶尖高手下,然后同时在另一个对局室和另外一个顶尖高手下,自己在两头穿梭,用一位顶尖高手走的棋,去应付另外一个顶尖对手。

洞察了真相的小A和W都有点儿失落,这四天愈来愈热的情感猛踩了刹车。尽管彼此爱慕的要素都还在,尽管双方都以诗为密码测验过彼此,但仅仅因为这“因”是被设计的,那“果”便令人怀疑,哪怕一切如此真实。

对意外事件的反应,再次验证了他们是一路人,他们强烈地热爱这个世界给予的触及感,但又怀疑这个世界的确切性。

第三堆篝火旁的W像被夺去了魂魄。M的计划,前半部分(设计两人相识)非常完美,后半部分(设计两人相遇)极其冒险,衔接处的漏洞(设计两人邀约)虽不明显,可对于两个喜欢辛波斯卡这类如激光手术刀般精准的诗歌爱好者而言,早晚会被识破。

然而M一如既往地聪明,假如想让两堆不相干的火烧在一起,你必须挖掘出双方心底最深处的燃料。他在那个古老的BBS不多的几千个注册者中挑出了小A,这个险值得冒,也是最优解。

除了彼此吵闹三观不符,W和M是一对天生搭档。这一次他俩再次默契配合,W在第四天看穿了M的圈套,这是一个完美的位置,没有退路。不管是向哪头走,两三天内都不会有手机信号。M足以让律师准备文件,卖掉他俩的公司,W再也没有机会去拍M的桌子。

第二堆篝火旁的小A告诉摄影师,W如浮冰般离开了第三堆篝火,独自一人走向海边。她没有跟去。她不知道该从哪一头来安抚W,因为她也是受害者。但显然W受伤程度更大--被戳破的爱情幻觉,搭档的背叛,事业的戛然而止。上一次类似的打击是他父亲的离去。小A猜测W会坐在墨绿色的崖石上发呆,大海远处或许有夜行的邮轮经过,开向阿拉斯加的冰川。

讲到这儿,第一堆篝火旁的摄影师环顾了一圈静静发呆的我们,摇摇头笑,你们以为这是故事的结局?不。

一个好的摄影师必须是一个好的故事讲述者,构图的张力和情节的张力,拥有类似的空间与时间压缩原理。摄影师说,在第二堆篝火旁的时候,我和你们一样,沉浸在情节里,但又隐约觉得电影还没到收场的时候。这时,小A开始继续讲第三堆篝火旁的故事。

第三堆篝火旁的小A脑子全空了。W的空位置上,有一张小纸片,她拿在手里无意识地翻转着。这时旁边有位一直默不作声的徒步者小心翼翼地说:我知道M的公司。

小A抬头望着他。那人接着讲:M的公司在圈子里小有名气,我的一个同学提及过。但是……

小A问:但是什么?

那人答:那家公司只有一个创始人,那就是M。我从未听说过有W这个人。

第二堆篝火旁的摄影师,和第一堆篝火旁的我们全都愣住了,但惊异程度都比不上第三堆篝火旁张大嘴的小A。她突然意识到什么,站起来向海边冲去。

后来在第二堆篝火旁,小A告诉摄影师,她一下子看明白了W那张涂鸦的小纸片。上面只是些没头没脑的文字:

"我走上楼梯,看见一个不在那儿的人。他今天也不在,我希望他离去。”

这不是一首诗,也没有更多寓意。那个瞬间小A想起这句话是电影《致命ID》片头的一句台词,那是一部关于人格分裂的电影。

我问摄影师,所以W和M其实是一个人?

摄影师望着我,没回答,自顾自地说:有种说法是,所谓自杀,是里面的人把外面的人杀了。

我说:那么设计者是W还是M?要卖掉公司的M会喜欢辛波斯卡吗?“被骗”的W真的一无所知吗?所谓的人格分裂是指会在不同的时间分裂成两个完全不一样的人,还是仅仅是一个人的自圆其说?

摄影师说:谁知道呢?关于人格的同一性,地球上没人有答案。

如果W和M真的是一个人,那么W或M似乎有两个维度的“分裂”:一个是世俗维度的。W渴望自由生活,而M追逐没有尽头的“成功”;一个是情感维度的。M憎恨抛弃了自己的父亲,一心要忘掉他,而W一直在找寻与父亲的和解。

小A也有着某种更广义的分裂。她有黄皮肤的中国面孔,里面都是白色的。可她的基因在隔了好几代之后,似乎仍与江南的油菜花魂牵梦绕。

慢着,我突然意识到,只有眼前的这堆篝火是真切的,而另外两堆篝火,都出自摄影师的口中。分裂的会不会是他?

第一堆篝火,是我们坐在这儿,听摄影师讲小A和W的故事。

第二堆篝火,是小A给摄影师讲故事,当时是她和W或M重逢后,再次走“死亡之线”。

第三堆篝火,是小A和W网友见面,第一次走“死亡之线”。

这三条叙述线,又是嵌套式的。嵌套是分裂的反义词,二者连时间逻辑都是逆向的。分裂如同树木向上的枝桠,而嵌套则是时间的回卷:现在,第一堆篝火旁的摄影师,复述他过去在第二堆篝火旁听到的,发生在第三堆篝火旁的过去的过去的故事。

即使是摄影师编造了这个故事,也合情合理。也许他的心底有一对W和M,作为青壮年的移民,做人生选择时,潜意识里一定有W和M之间的争执。在拍摄异国他乡的壮丽景象时,他比谁都更怀念家乡的山河故人。在某次长途跋涉的夜晚,望见无尽的星河,触动他的并非是“向死而生”那类巨大的命题,而是他童年的某个不能更具体的细节记忆。

这三堆篝火,就像三个不同机位的摄像机,分别记录着此刻,过去,和过去的过去。这让摄影师获得了某种电影导演式的立体化叙述特权,且听他继续讲吧。

接下来,发生在第三堆篝火旁的故事,尤其是离开篝火后小A和W,或者是M,他俩在崖石上的情节,经历过小A,摄影师,以及我的三重加工,不可避免地会有些戏剧性。即使摄影师用他那晚拍摄的星空照片作证说“一切都是真实的”。

小A跑到崖石边时,W,或者M正望着大海,用手向前摸着什么。小A喊道:喂!你的父亲已经死了。

W或者M停住了,像个没被完全唤醒的入梦者。小A大声说:“他已经死了,没有躲去任何地方。每一个父亲都甘心为自己的孩子去死!”

温和环境下长大的小A,是在听爷爷讲爷爷的故事时懂得这句话的。爷爷问自己的爷爷:当年你为什么那么勇敢?爷爷的爷爷回答:我从头到尾都是一个胆小鬼。但你要记住,假如我在战场上死了,是为了你,为了同去的兄弟们,而不是为别的任何家伙。

W或M后来向小A解释自己在摸什么,“我看到父亲坐在墨绿色的崖石上,孤伶伶的。他望见我,一点儿也不惊讶,只是问,你有烟吗?我找不到烟了。”

W或M哭着去摸父亲的肩膀,他想为过去这些年所有的怀疑和憎恨向父亲道歉。他向前走去,距离悬崖一步之遥时,听见了小A的大喊。

再回到篝火旁,小A发现坐在身边的W或者M,已经是一个陌生人了。她从他的眼睛里看不到自己曾经熟悉的W。在某种意义上,那场“自杀”成功了,但不知道是W杀死了M,还是M杀死了W。

W或M必须从父亲的死亡之中走出来,他需要一场仪式,来告别他的告别。

W或M一直被父亲的死拖拽着。这与父亲是否真的死了,以及因何而死并无关系。

在人类的情感体系中,父爱是一种奇怪的存在。雄性动物不负责任的特点,在人类社会并未得到多大改善。于是男人们为了尊严,决定做一次自我辩解式的了结,那就是:

牺牲。正如小A的爷爷的爷爷主动奔赴战火。

W或M的父亲无论是自杀了,还是躲去了哪个地方,都是某种不容置疑的牺牲。假如他死了,这是牺牲;假如他没死,他一生都会经受生不如死的煎熬,这也是牺牲。

牺牲是父子间的传承方式。像是老剑客对年轻剑客的传授,没有半句废话。

在长大成人的过程中,W或M对父亲的情感,并非是憎恨或者和解,而是一次待完成的继承。他需有有足够长的时间来完成从男孩到男人的蜕变。在那个过程中即使父亲已经离去,却仍是时刻伴随的。

“死亡之线”的正中,断崖,峭壁,激浪,青岩,是一个完美的告别之地。

W或M在一个梦境中与父亲重逢。意外的是,父亲苍老而虚弱。儿子以为父亲会保持他离开前的模样,大部分头发仍然是黑色的,有点儿混蛋的感觉。但眼前并非如此。在时间的流放之地,父亲继续孤独地支撑着,一年年老去。

在那一刻,W终于理解了一个父亲的牺牲到底是什么。

当他差点儿触及父亲的亡灵时,她的声音唤醒了他。他愣住,泪水溅落在礁石上。

随后的那天晚上,两个人一句话都没说,接下来的三天也是,两人只是一前一后埋头走着,像两座平行漂浮的孤岛。走出“死亡之线”,W或者M没有告别,径自离去,从此走出了小A的生活。两人都删掉了彼此的一切讯息。

三年后,小A如愿去中国看了梦中层层叠叠的油菜花。旅途的最后一周,她去了W所在的城市,见到W经常提及的那条江。“江边有个公园,爸爸最喜欢亭子里吹长笛,看着日落。”

小A不记得是哪个公园,她在卫星地图上找到了五个符合特征的公园,每天去逛一个。黄昏时分,她坐在亭子里,打开手机上的钢琴APP,随便弹上一曲。

第五天的落日像一个单面煎蛋那柔软欲滴的蛋心。小A坐在江边发呆,运沙船驶过,江水打在岸边。她不由得想起辛波斯卡的那首诗,只是将“湖”换作了“江”,她在心底吟诵:

江底其实无底,江岸其实无岸。

江水既不觉自己湿,也不觉自己干,

对浪花本身而言,既无单数也无复数。

它们听不见自己飞溅于

无所谓小或大的石头上的声音。

这时,她听见这诗从哪儿涌现了出来,清晰地漂浮在耳畔:

“这一切都在本无天空的天空下,

落日根本没有落下,

不躲不藏地在一朵不由自主的云后。”

小A回头,看见一个人不知何时坐在自己身旁。小A后来对摄影师说,她从他的眼神里认出了他。他像是第一次见到她,轻声说,hi。

 

 
后记
去年秋天,我差点儿买了个农场。目的是:1、有个度假屋,和家人共享时光,给孩子们多一些不一样的记忆;2、为Family建一个很久不变的家园;3、想找个地方,收集一些BC省从华工时期起的华人资料与物品。
在最后一刻,我放弃了。也许自己没有准备好,也许那个农场没能足够打动我。它很大,马场设施多得惊人,却没有那种梦想中乡村的宁静和忧愁,也没有油菜花。农场过往的岁月与我无关,离家的距离也稍远。
我的农场梦,可能只是一个试图挽留时间、存放记忆、对抗漂泊的幻觉。总之,那个农场或将因为失去而永存了,而我也将继续找寻。
《无岸》这个故事里的许多元素是真实的。例如:大海,城市,雪山,女飞行员,生蚝,礁岩,以及被夸大的徒步路线。
小A对家园的疑惑,也许是我女儿即将面对或正在承受的。她出生在广州,两岁多随家人到海外,坚持在学中文,但已经不会写了。
那个关于父亲要烟的梦,是我自己的。还有祖居门前的池塘。
最真实的,莫过于油菜花。
那年清明时节,送父亲长眠于照片中的河岸边,遍地都是油菜花,层层叠叠,犹如梦境。
(完)

本篇文章来源于微信公众号: 孤独大脑

“做难而正确的事情”之陷阱

一句话,或一个观点,一旦流行开来,往往会不可避免地被简化、被误读,就像任何一个科学理念都可能成为骗子和算命先生手里的工具。

“做难而正确的事情”,是我也喜欢的一句话,这句话背后的主角、故事和讲述者,都是我所仰慕的。其初衷是:

1、坚持做对的事情;
2、对的事情在于创造价值,而价值是稀缺的;
3、所以当你搞不清楚时,选较难的那条路。

然而,“做难而正确的事情”在某种程度上也开始被曲解,许多时候变成观念上的陷阱。例如:

当人们在做很难的事情时,就会安慰自己在做“难而正确”的事情。

然而一件事情“很难”,并不意味着就是“难而正确”的。

结果,当事人极可能在一件“难而错误”的事情上死磕,却还心存幻想。

人们对于不确定性的恐惧,大于对当下受苦受累的恐惧。

由于正确和错误不是即时显现的,也就是包含着不确定性;而“显得很难”则是当下直接且具体的感受。

于是,许多人就不辞辛苦地用当下的操劳,来逃避对不确定性的“正确未来”的追寻。

“形式意义上的艰难”,经常是廉价的毒药。

更有甚者,有些人选择了虚假的艰难。

脱离创造价值的受苦,经常是由自我感动和虚幻的仪式感构成的。

就像在沙漠上“穿行”越来越成为商务人士的广场舞。

那只是一种看起来的、商品化的“难”,像是被夏尔巴人抬上雪山的登山者,和小学生被罚抄100遍文章一样意义不大。

对比而言,一年365天坚持每个早晨在小区里跑上十圈,不顾形式,没有监督,自我激励,也许更不容易。

 

当我说“做难而正确的事情的陷阱”时,并非否认这句话的价值。

这是个非常了不起的思考工具。

如下图,假如将“正误”作为横坐标,将“难易”作为纵坐标,会得到四个象限:

右上:不言而喻,假如条件允许,我们当然应该选择“容易而正确”的事情。

右下:然而“宽门”人太多,“容易而正确”的事情会变得稀缺罕见,于是“窄门”成为选择,也就是“正确但艰难”的事情。

左下:可是,太多人因为受“做难而正确的事情”这句话的鼓励,陷在“艰难而错误”的事情里,死磕到底不回头。

左上:而热衷于形式主义“受难”的人们,则是自我感动于“错误而容易”的事情当中,不能自拔。

过于简化的鸡汤往往变成了毒药。

人们热衷于分享成功人士的经验,例如“主动逃离舒适区”,可结果是:

除了失去舒适什么都没得到。

的确,富豪如埃隆·马斯克一直在逃离舒适区,挑战受虐区,问题在于他原本是那种在受虐区里最舒适的人。

我认识一位超级有钱人,他每年只休息大年初一这一天。不是因为他要逃离舒适区,而是因为他不工作就不舒适。

 

“毒鸡汤”毒在哪里?

数学天才伽罗瓦说:“一个作家对读者做的最大的恶就是隐藏难点。

就像人们总说“要做时间的朋友”,可时间凭什么要做你的朋友呢?

又如“一眼看穿本质的能力”,你能用这能力去解个数学题或者当X光机用吗?

思想之作为工具,不是武林秘籍,更不是屠龙术。

工具是中性的,例如均值回归,复利计算,菜刀......甚至包括牛顿定律。

这里的中性是指:人们试图孤立地用这些工具在人类世俗环境里(为了名和利)获得竞争优势时,通常是无效的。

这有点儿像市场有效假说。或者是量化交易里因为太多人使用而失效的算法。

我想再次重申,本文标题《“做难而正确的事情”之陷阱》,并非是说“做难而正确的事情”是陷阱,而是说:

隐藏难点,误读“做难而正确的事情”,可能会成为一个陷阱。

“用表演型艰难”来制造自我幻觉,也许将伤害更多的人。

反复强调这一点,是我写《复利的谎言》得到的教训:

并不是每个人都理解,“复利的谎言”不等于“复利是谎言”。

那么,到底什么样的“难而正确的事情”才是对的呢?

我这里有一道有趣的题目,能生动地呈现这一观点的价值。

小明喜欢打网球,有一天他爹对他说:如果你在三盘中连赢2盘,就奖励你一辆车。
具体的规则是,小明以他爹和俱乐部冠军为对手,但不能连续选择一个人2次,所以只有以下两种比赛顺序:
A、爹-冠军-爹;
B、冠军-爹-冠军。
冠军的水平当然比他爹高。小明应该选择哪种顺序?

直觉上,当然应该选和水平弱的人打两局吧。

总不能说,因为要做“难而正确的事情”,就选择和冠军打两局?

这个时候,从表面去思考毫无意义,你只能去计算。

为了更直观,我假设小明对他爹的胜率是60%,对冠军的胜率是20%。

选项A,顺序是“爹-冠军-爹”,计算如下:

如上图,连胜两局(包含了连胜三局)的可能性,标示为橙色,计算概率为:

0.6✖️0.2+0.4✖️0.2✖️0.6=0.168

选项B,顺序是“冠军-爹-冠军,计算如下:

0.2✖️0.6+0.8✖️0.6✖️0.2=0.216

因为0.168 < 0.216,所以,选择和冠军打两局的“选项B”,获胜概率更高。

(以上计算用a和b替换具体的胜率数字计算结果是一样的。)

似乎有点儿反直觉。

小明选择看上去更难的对局,并非是因为要做“难而正确的事情”,只是因为这样做更正确。

 

最后

要判断一件事情是否正确,无法靠形式与感动来实现,而是:

  • 需要忍受不确定性,需要面向未来思考;

  • 需要走入泥泞,需要做实验做对比,需要不怕犯错;

  • 需要艰辛计算,需要深入钻研某件事的专业和实践;

  • 需要基本功,需要不断重复;

  • 需要积累经验但又不受限于经验;

  • 更需要耐心地等待,享受过程。

以上种种,都比“显得难”而更难。

正如卡尔·维诺在《巴黎隐士》里所写:

“我对任何唾手可得,快速,出自本能,即兴,含混的事物没有信心。

我相信缓慢,平和,细水长流的力量,踏实,冷静。

我不相信缺乏自律精神,不自我建设,不努力,可以得到个人或集体的解放。”

本篇文章来源于微信公众号: 孤独大脑

接受现实,扭曲现实

01
上世纪70年代末,邓公访新加坡,与李光耀会面。李对此极为难忘,多年后他在书中写道:
“邓是我所见过的领导人当中给我印象最深刻的一位。尽管他只有5英尺高,却是人中之杰。
虽已年届74岁,在面对不愉快的现实时,他随时准备改变自己的想法

02
马斯克收购推特,令人们开始怀疑他的动机,甚至担心他也是个追逐名利的俗人。《乔布斯传》的作者艾萨克森却不这么看。
他特别留意到,推特发公告前,马斯克在特斯拉的奥斯汀超级工厂与印尼投资部长讨论电池供应链和矿山的事情。
而在赢得推特之战后,马斯克照常开了晚10点的例会,讨论猛禽火箭发动机的设计,研究气门泄漏解决方案。
没人在会议上提老板刚花400多亿美元买到手的推特。

03
接受现实,扭曲现实,像是超级牛人们的武林绝学。
现实扭曲场的鼻祖乔布斯,并非是靠不接受现实来扭曲现实的。
他会骂别人是狗屎,可一旦别人证明自己是对的,乔布斯就丝毫不介意亲口吃下“狗屎”。
表面上看起来令人不愉快,其实是不介意是否愉快,而只在乎真实,是否正确。
面子才是狗屎。

04
曾经因为被乔布斯忽视而难过的马斯克,是“现实扭曲场”的继承者。
马斯克说:我见过很多违反法律的人,但还没有见过可以违反物理学的人。”
可他知道,非物理世界的有些事情是可以“扭曲”的:
1、他选择的是小概率成功的事业,甚至当初计算起来期望值为负,即使时间拉长来看是人类非做不可的事。可很多如此选择的理想主义者都挂掉了。
他活下来且活得很好的原因,除了工程能力强,会用人等等,还有一个与“小概率”有关。马斯克充分运用了人们对小概率事件的好奇、同情以及额外奖励;
2、一般商人喜欢忽悠弱的人,所以骗子的骗术都很低劣,他们以此筛选用户。而马斯克非常擅长忽悠高智商的人。
例如他的前女友分手后对他的“声讨”,简直是变相赞美他。他对自己传记的作者,也进行了智商和忠诚的双重考验。

05
讲回我们普通人。
知错就改,是接受现实后最应该做的事情。
如果你认为你正在做的事情是错的,就应该尽快停止。可是大多数人做错事后会加速行动,错上加错,就像一个人掉进坑里后更加卖力地挖坑。
知止难,止损更难。主要原因有二:
1、这事儿对我太重要了,我不能输。--这是混淆了愿望和现实
2、我花了太多心血和本钱,不能丢。--这是不懂沉没成本,被过去绑架
“知错就改”这个词儿,其实也不够精确。
比如AI下棋,并非是“改错”,而是永远以终局为评估标准,追求当下最好的一手。
何谓对错?只能是基于比较。
  • 能够评估哪一步棋好,靠的是智商和远见;
  • 能够坚定地走更好的那一手棋,靠的是理性和意志。

06
让我从宇宙层面开始,说说人类在连续性上由来已久的幻觉。
世界是由无数个极小概率堆积而成,那些我们习以为常的事物,以及所谓大概率事件,才是这个宇宙里的意外。
科学并非对真理的发现,而是适用于某个边界内的发明。幸运的是,已有的科学竟然能让人类走这么远。
人类对自身神奇的感慨,只是某个偶然产物基于自身特性的自我感动,并陷身于自我指涉的自圆其说当中而已。
人体的主要组成成分氢,产生于137亿年前的宇宙大爆炸中。碳和氧则是70亿到120亿年前在恒星体内产生。
我们产生于星尘,最终也归于星尘。

07
人类靠自身努力实现的连贯性,不过数千年历史。
更确切说,那条平缓了许多年的人类生存曲线,直到1776 年才开始陡峭起来。
那一年,发生了三件“偶然”的事件,斯密出版了《国富论》,杰斐逊起草了《独立宣言》,瓦特改进了蒸汽机。
理性驱动下的科技与市场,让人类沉浸在地球表面这数百年突飞猛进的“局部现实”里。
连贯性的背后,是我们对因果的幻想,对付出必有回报的贪婪,对时间的延绵不绝的依赖,以及对宏大的漠视,和对未来的短视。
08
你我可能忽略了一个事实,我们这一代正在经历人类历史上都罕见的、已长达40年的经济高速增长。
我们对超级运气习以为常,就像人类对地球习以为常。
海底捞在疫情之初逆势扩张,张勇“差点儿”可以赢,他当年正是这样从非典中挺过来并崛起的;
某地产巨头持续下大注,也许是因为肌肉记忆里还留有十多年前的“四万亿”刺激。
  • “这一次也一样的事情”,往往成为“人不能两次踏进同一条河流”的新证据;
  • “这一次不一样的事情”,则成为“太阳下无新事”的新证据。
前者是常态,后者是常识。
人们较多地混淆了常态和常识:
  • 常态经常会变成“新常态”;
  • 而常识若变成“新常识”就不配叫常识。
例如人进了一个比较臭或者比较香的环境里,过一会儿就不会觉得臭或者香了。
新环境是新常态,而嗅觉的适应性则是常识。

09
再说说连续性幻觉的底层原因吧。
我在《人生算法》里,描述了下面这个模型:认知闭环的基本单元。
由人行为的原理可知,人的行为的过程主要由人对环境信息的获取 、感知 、处理和输出组成 ,即感知 、认知和决策以及行动的过程。
我们思考一个问题,做一件事情,开展一个项目,都需完成如上这个认知闭环。
在感知环节,你需要敏感;在认知环节,你需要理性;在决策环节,你需要果断;在行动环节,你需要野蛮。
难题来了,敏感和野蛮冲突,理性和果断也有点儿纠结。所以,你我平常人,经常是貌似想明白了,却不能下手;看似下手了,又犹犹豫豫。
对于马斯克这样的混球呢?这根本不是问题。和巴菲特、贝佐斯一样,他们都出生在“不完整”家庭,某种意义上,他们的性格都是“分裂”的。
  • 感知的时候,混球们一触即发;
  • 认知的时候,混球们100%理性;
  • 决策的时候,混球们绝不纠结;
  • 行动的时候,混球们十分混球。
在各个频道切换时,混球们绝不像我们那样拖泥带水。他们在自己分裂的性格上自由跳跃。

10
如上所述,“接受现实、知错就改”之所以那么难,是因为这么做是“反人性”的。
我们条件反射的动物本能,我们脆弱的科学与顽固的非理性,我们根深蒂固的决定和目的论,都令自身陷入踩西瓜皮的惯性困境中而不能刹车。
当“意外”发生,并非连续性失去了,而是我们过去的连续性只是幻觉,大自然野性的那一面始终未被驯化,而人类的无知也是这野性的一部分。
斯宾诺莎的“万物之神”依然神秘不现,爱因斯坦的大一统理论或许只是孤独老人最后的死磕。

11
在过去四百多年里,人类一直试图驯服偶然性。
从概率、统计学、混沌理论,到复杂科学、人工智能,聪明人们重新审视连续性背后的非连续性,然后用新理论新公式来发现非连续性背后的连续性。
新工具解决了许多旧问题,也制造了很多新问题。
钟形曲线经常很正确,偶尔错一次就会成为摧毁一切的黑天鹅。
均值回归如地心引力般稳定,可是当投资者去抄底跌去一半的价值股,并期待其回归均值时,却发现定律失效了。
失效的也许不是均值回归,而是我们对“均值”的定义如同刻舟求剑。
人们对辉煌时刻的强化记忆,可能只是一个小数陷阱。四十年很长,对人类周期而言却太短,数据量不够大。
小马哥说:“我要争一口气,不是想证明我了不起,只是要证明我失去的东西,我一定要夺回来。”
可是在时代的巨浪中,一个人的“一口气”,不过是一粒沙而已。

12
每天早上,我们从梦中醒来,然后进入一个更加漫长的白日之梦。
人为什么不能每日重启呢?像新生的孩子,或是如树木般既有一年四季的轮回,又有年轮的叠加。
因为我们太依赖于连续性了,我们的存在依托于记忆,熟悉,习惯,经验,气味,温度,得失,荣辱......
人类的意识也许就像一团连续的火,我们不能理解“自我的感知”为何如此牢靠,也不得不怀疑自由意志的真实性是否只是一种连续性的幻象。
也许我们大脑中某个无法定义的部位,每时每刻都像在穿羊肉串一样整合我们关于过去的连贯性,把一大堆偶然沿时间序列串起来,剪辑,调色,配乐,配上片头和字幕。
我们忘却了生命在宇宙间的出现犹如一次不可思议的超空间穿梭,我们忘却了美好年代背后的惊心动魄,我们以为运气是天上掉下来的馅饼。
多么强大的电脑或人脑,也无法通过输入过去的数据而得出未来的预测,因为所谓过去只是无数个湮没在时间黑洞里的平行宇宙中的一个而已。

13
让我们说回“接受现实+扭曲现实”。
人类的进化历程,决定了我们可能过于放大眼前的“危”和“机”,而忽视了较远的“危”和“机”。
乐观是我们的唯一选择,因为一切终将消失,悲观毫无作用,旅途本身就是生命所有的意义。
马斯克说:宁愿要错误的乐观,也不要正确的悲观。他说的是比较抽象的愿景。
概括而言,我们需要:“乐观地幻想,悲观地计划,平静地实行”
“乐观地幻想”,是指我们需要某种抽象而宏大的乐观,帮助自己穿越周期性的波动和恐惧;
“悲观地计划”,是指要设想到一切可能发生的问题,慎重周密地思考对策;
“平静地实行”,是指专注于当下,不管情况多么糟糕,也总能找出相对最好的那一手,坚定地走出那一手。

14
无论是我们必须接受的宏观,还是我们可以有所作为的微观,一切或好或坏的大小环境,无非是这个现实世界的已知条件。
接受现实,是我们对已知条件的重新梳理。
别懊恼,朝前看。别同情自己的过去,要同情自己的未来。
我们没打算投降,我们需要盘点一下自己的弹药。
就像《火星救援》里的呆萌一样,哪怕独自一人被困在遥远的火星,生还的概率几乎为零,也会把所有的食物一份一份地分好,计算自己还需要种多少土豆。
多烂的一手牌也是牌。也许不存在“把一手好牌打烂”,因为一手牌中最大的那张牌是打牌的人。

15
恐惧无法清零,但人是一种可以带着恐惧前行的动物。
马克·吐温说,人的一生被很多苦难和害怕所困扰,但大多数从未发生。
人们常说,疫情之后我们再也无法回到昨天。
可是,即使没有疫情,我们也无法且不必回到昨天。
世界将再次回归到某个均值,但这个均值将被重新定义。
我们能做的,只有好好计算自己的口粮,并且不因为模糊不清而放弃对正确和价值的追求
这个世界需要你,因为聪明的人经常不愿意走入泥泞,而泥泞里的人有时又不够聪明。
有趣的是,若你能做到“接受现实”,“扭曲现实”就会自动发生。
因为我们自身就是现实的一部分。
改变总是痛苦而艰难的,有时候某些外部的困境,或是个人的低谷,能帮助我们激发出自身比想象中更多的真实力量。
当我们打算改变自己时,就已经“扭曲”了这冷酷的现实。

本篇文章来源于微信公众号: 孤独大脑